Солнце при излучения света теряет свою массу

Солнце при излучения света теряет свою массу

Наше Солнце теряет за счёт излучения света массу, примерно равную 1, 39 10 5 миллиардов тонн в год. Найдите солнечную постоянную для Марса, то есть среднюю энергию, попадающую за 1 секунду на 1м 2 поверхности, перпендикулярной направлению солнечных лучей, около Марса вне его атмосферы. Известно, что средний радиус орбиты Марса в 1,52 раза больше среднего радиуса орбиты Земли, который составляет около 150 миллионов километров. Ответ выразите в кВт/м 2 .

Энергия, излучаемая Солнцем во все стороны за год, согласно формуле Эйнштейна для связи массы и энергии равна (здесь m — потери массы за год, — скорость света в вакууме). За секунду Солнце излучает энергию (здесь T — длительность земного года в секундах). Эта энергия распределяется по сфере площадью (здесь и — радиусы орбит Марса и Земли).

Таким образом, солнечная постоянная, то есть энергия, попадающая за 1 секунду на 1 м 2 поверхности, перпендикулярной направлению солнечных лучей, около Марса вне его атмосферы равна

Ответ:

Критерии оценивания выполнения задания Баллы
Приведено полное решение, включающее следующие элементы:

I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае — формула Эйнштейна для связи массы и энергии);

II) описаны все вводимые в решении буквенные обозначения физических величин (за исключением, возможно, обозначений констант, указанных в варианте КИМ, и обозначений, используемых в условии задачи);

III) проведены необходимые математические преобразования (допускается вербальное указание на их проведение) и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);

IV) представлен правильный ответ с указанием единиц измерения искомой величины.

3
Правильно записаны необходимые положения теории и физические законы, закономерности, проведены необходимые преобразования, и представлен правильный ответ с указанием единиц измерения искомой величины. Но имеется один из следующих недостатков.

Записи, соответствующие одному или обоим пунктам: II и III, — представлены не в полном объёме или отсутствуют.

При ПОЛНОМ правильном решении лишние записи, не входящие в решение (возможно, неверные), не отделены от решения (не зачёркнуты, не заключены в скобки, рамку и т. п.).

При ПОЛНОМ решении в необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) преобразования/вычисления не доведены до конца.

При ПОЛНОМ решении отсутствует пункт IV, или в нём допущена ошибка.

2
Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа.

В решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Источник

Астрономы вычислили скорость уменьшения массы Солнца. В этом им помог Меркурий

Данное сообщение (материал) создано и (или) распространено иностранным средством массовой информации, выполняющим функции иностранного агента, и (или) российским юридическим лицом, выполняющим функции иностранного агента

Масса Солнца ежегодно уменьшается на 179 триллионов тонн

Фото: John Towner / Unsplash.com

Исследователи смогли получить точное значение уменьшения массы Солнца с помощью анализа данных, полученных при наблюдении за Меркурием. Соответствующая работа специалистов НАСА и сотрудников Массачусетского технологического института опубликована в Nature Communications, кратко ее пересказывает РИА Новости.

Солнце, как остальные звезды, светится за счет термоядерных реакций: содержащиеся в нем ядра водорода и других легких элементов сливаются; высвобождающаяся при этом энергия конвертируется в свет и тепло. Помимо этого, Солнце выбрасывает в космос «солнечный ветер» – поток протонов и электронов на очень высоких скоростях.

Так как выбрасываемая энергия ничем не восполняется, Солнце непрерывно теряет массу. Из-за изменения массы сила притяжения планет уменьшается, в связи с чем их орбиты увеличиваются. Ранее уже были даны оценки того, что к моменту превращения Солнца в красный гигант диаметр орбиты Земли увеличится на 150 тысяч километров. Однако до сих пор ученые не могли количественно оценить ежегодные потери массы Солнца, так как за такие короткие сроки изменения слишком малы.

В новой работе специалисты исследовали изменения орбиты Меркурия – так как он находится ближе всех остальных планет к Солнцу, уменьшение массы звезды влияет на его положение в большей степени. Ученые взяли данные зонда Messenger, на протяжении нескольких лет работавшего на орбите Меркурия. Они проанализировали, сколько времени занимала передача радиоволн от зонда на Землю и обратно в различные годы, зафиксировав таким образом изменение расстояния между ними с высокой точностью.

Произведенные расчеты показали, что ежегодно Солнце теряет около 179 трлн тонн своей массы. Это сравнимо, например, с 3,5% общей массы атмосферы Земли. Полученные данные оказались немного ниже, чем высказываемые ранее теоретические оценки.

Анализ данных, помимо прочего, помог астрономам проверить верность теоретических постулатов теории относительности. Полученные результаты показали, что поведение Солнца полностью соответствует теоретическим выкладкам. В связи с этим было в очередной раз подтверждено, что теорию относительности можно использовать для предсказания будущего Солнечной системы и изучения истории ее формирования.

Источник

Солнце теряет свою массу: миллионы тонн ежесекундно. Опасно ли это?


Солнце является важным для нашей планеты и человечества и по этой причине учёные пристально следят за всем тем, что происходит с нашим светилом. Существует версия, что когда Солнце погаснет, то вся наша галактика будет уничтожена, но впереди у нас есть несколько миллиардов лет в запасе. По крайней мере так говорят учёные. Но если они ошибаются и наша важная звезда уже находится на последнем издыхании?

Последние данные учёных о Солнце являются очень пугающими. Согласно полученным данным, наше светило теряет миллионы тонн своего веса каждую секунду, только представьте на сколько уменьшается его масса за месяцы и годы? Причин для потери массы звезды может быть несколько, как предполагают учёные.

Первая причина может заключаться в испарении солнечных частиц с поверхности Солнца. Скорость этих частиц может достигать 1200 км/с и каждую секунду может испарятся около 1,5 тонн. Масштабы потрясают воображения, но благодаря испарению, мы можем наблюдать на нашей планете северное сияние.

Другая причина может заключаться в самом ядре звезды, а точнее в синтезе гелия и водорода. Благодаря этой реакции Солнце выделяет свет, а водород может переходить в энергию и в последствии покидать светило в виде нейтрино, отправляясь в космическое пространство. По расчётам учёных, если учесть все показатели, то Солнце может терять более 170 триллионов тон своей массы каждый год. Но это очень маленькие цифры в масштабах звезды и даже за 5 миллиардов лет вес звезды может уменьшиться всего на 0,034% от общей массы.

Однако, гравитация Солнца будет постепенно уменьшаться и Земля будет отдаляться от светила на 1,6 сантиметра ежегодно и пока сложно предсказать последствия для нашей планеты от этих процессов.

Источник

Эйнштейн и квантовая теория света

Эйнштейн является одним из основателей новой, квантовой теории света и основателем теории относительности. Согласно квантовой теории свет представляет поток своеобразных частиц материи, так называемых квантов, или фотонов. Эйнштейн доказал, что фотоны обладают не только некоторой энергией, которую они уносят от светящегося тела, но и (соответственно этой энергии) некоторой массой, а значит и весом, как это вытекало из новой теории тяготения, установленной Эйнштейном на основе теории относительности3.

Но указанный вывод надо было доказать на опыте. Эйнштейн (точнее ряда других ученых) это и сделал, применив (говоря принципиально) метод Марата. Однако Эйнштейн учел, что те тяжелые, массивные тела, вблизи которых Марат пропускал лучи света, были все же недостаточно массивны; поэтому они и не могли сколько-нибудь заметно притянуть фотоны. В поисках достаточ­но массивного тела Эйнштейн обратился за помощью к астрономии. В качестве тела большой массы он выбрал Солнце,— ведь,- масса Солнца превышает массу нашего земного шара больше чем в 300 тыс. раз.

Солнце должно притягивать проходящие вблизи его поверхности световые лучи с ощутительной силой.

Все это хорошо,— скажет читатель; но откуда же взять такие, проходящие вблизи солнечной поверхности, лучи?

Эйнштейн нашел очень остроумный выход из положения.

Представьте себе, что вы наблюдаете полное солнечное затмение, во время которого на несколько минут наступает такая темнота, что вблизи закрытого Луной диска Солнца становятся видимыми звезды. Лучи от таких звезд, видимых вблизи Солнца, прежде чем подойти к нашему глазу, должны пройти очень близко от поверхности Солнца.

Эйнштейн рассуждал так: если свет действительно весом, если он способен притягиваться материальными телами, то идущий к нам мимо Солнца световой луч от звезды должен вследствие его притяжения Солнцем несколько отклониться в направлении к Солнцу. В итоге световой луч вступит в глаз в та­ком направлении, как если бы он шел из точки, расположенной несколько дальше от Солнца, чем расположена видимая рядом с солнечным диском звезда.

На этом основании Эйнштейн обратился к астрономам всего мира с просьбой пронаблюдать при помощи фотографических снимков положения звезд вблизи солнечного диска во время солнечного затмения. Он предсказывал, что изображения звезд на снимках окажутся несколько смещенными в сторону от Солнца. Эйнштейн вывел даже формулу, устанавливавшую количественную величину этого смещения в зависимости от расстояния изображения звезды на снимке от центра изображения диска Солнца: смещение должно было быть обратно пропорционально этому расстоянию.

Наблюдения. произведенные в 1919, 1922 и 1929 гг., подтвердили предсказание Эйнштейна. Правда, наблюдения 1929 г. дали результат, количественно несколько превышающий величину указываемого теорией Эйнштейна смещения (примерно на 30

Источник

Строение, излучение и эволюция солнца

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнечная энергия на поверхности Земли

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (

5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

Интересные факты о звездах

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Видео

Источник

Читайте также:  Эффективность ввода излучения в оптическое волокно
Оцените статью
Электроника