Радиоволна постоянная авогадро видимое излучение ультрафиолет

Радиоволна постоянная авогадро видимое излучение ультрафиолет

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Прочитайте перечень понятий, с которыми вы сталкивались в курсе физики:

радиоволна, постоянная Авогадро, видимое излучение, ультрафиолет, скорость света в вакууме,
удельная теплоемкость воды.

Разделите эти понятия на две группы по выбранному вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

Название группы понятий Перечень понятий

На графике представлена зависимость скорости автомобиля от времени.

Выберите два утверждения, которые верно описывают движение автомобиля, и запишите номера, под которыми они указаны:

1) Первые 20 с автомобиль движется равномерно.

2) Первые 20 с автомобиль движется равноускоренно.

3) Максимальная скорость автомобиля за весь период наблюдения составляет 72 км/ч.

4) Автомобиль все время движется в разном направлении.

5) Максимальный модуль ускорения автомобиля за весь период наблюдения равен 2 м/с 2 .

Прочитайте текст и вставьте пропущенные слова. Слова в ответе могут повторяться.

У «правильного» велосипедиста есть правило: скорость движения ___________ по мере приближения к подъёму дороги. Это связано с тем, что при подъёме __________ потенциальная энергия силы тяжести. Следовательно, кинетическая энергия велосипедиста __________, и возрастает шанс преодолеть подъём.

Пять металлических брусков (А, B, C, D, E) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент составляют 80 °С, 80 °С, 60 °С, 60 °С, 40 °С. Какие из брусков имеют температуру 60 °С?

Из герметично закрытого сосуда выкачивают воздух. Выберите все утверждения, которые верно характеризуют процесс, происходящий с воздухом в сосуде, и запишите номера выбранных утверждений.

1) Объем воздуха в сосуде не меняется.

2) Объем воздуха в сосуде увеличивается.

3) Температура воздуха в сосуде увеличивается.

4) Температура воздуха в сосуде остаётся неизменной.

5) Давление воздуха в сосуде уменьшается.

6) Давление воздуха в сосуде остается неизменным.

На рисунке изображены два одинаковых электрометра, шары которых имеют заряд противоположных знаков. Каковы будут показания обоих электрометров, если их шары соединить тонкой медной проволокой?

В трансформаторе, изображённом на рисунке, на вход А подают переменное напряжение. На обмотках B, C и D возникает ЭДС индукции. Количество витков равно изображённому на рисунке. Расположите обмотки B, C и D в порядке уменьшения ЭДС индукции. Запишите в ответе соответствующую последовательность цифр.

На рисунке изображён фрагмент Периодической системы химических элементов Д. И. Менделеева. Изотоп хрома испытывает β + -распад, при котором образуются позитрон e + , нейтрино и ядро другого элемента. Определите, какой элемент образуется при β + -распаде изотопа хрома.

Напряжение измерили при помощи вольтметра. Погрешность измерения напряжения при помощи данного вольтметра равна его цене деления.

Запишите в ответ показания вольтметра в В с учётом погрешности измерений через точку с запятой. Например, если показания вольтметра (12 ± 3) В, то в ответе следует записать «12;3».

Вам необходимо исследовать, как зависит скорость погружения шариков в жидкость, от размера шариков:

— стеклянная емкость с жидкостью;

— набор шариков разных размеров из одного материала.

Опишите порядок проведения исследования.

1. Зарисуйте или опишите экспериментальную установку.

2. Опишите порядок действий при проведении исследования.

Какое физическое явление обуславливает работу ядерного реактора?

Атомная станция (АЭС) — ядерная установка , использующая для производства энергии (чаще всего электрической) ядерный реактор (реакторы), комплекс необходимых сооружений и оборудования.

Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии. Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

На рисунке показана схема работы атомной электростанции с двухконтурным водоводяным энергетическим реактором . Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины , вращающие электрогенераторы . На выходе из турбин пар поступает в конденсатор , где охлаждается большим количеством воды, поступающим из водохранилища.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер ( ВВЭР-1000 ).

Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий , свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, реакторы на быстрых нейтронах — два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях ( градирнях ), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Любая работающая АЭС оказывает влияние на окружающую среду по четырём направлениям:

• газообразные (в том числе радиоактивные) выбросы в атмосферу;

• выбросы большого количества тепла;

• распространение вокруг АЭС жидких радиоактивных отходов.

• Создание так называемых атомоградов.

В процессе работы реактора АЭС суммарная активность делящихся материалов возрастает в миллионы раз. Количество и состав газоаэрозольных выбросов радионуклидов в атмосферу зависит от типа реактора, продолжительности эксплуатации, мощности реактора, эффективности газо- и водоочистки. Газоаэрозольные выбросы проходят сложную систему очистки, необходимую для снижения их активности, а затем выбрасываются в атмосферу через высокую трубу, предназначенную для снижения их температуры.

Основные компоненты газоаэрозольных выбросов — радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и активированных продуктов коррозии, летучие соединения радиоактивного йода. В общей сложности в реакторе АЭС из уранового топлива образуются посредством деления атомов около 300 различных радионуклидов, из которых более 30 могут попасть в атмосферу.

Атомная станция (АЭС) — ядерная установка , использующая для производства энергии (чаще всего электрической) ядерный реактор (реакторы), комплекс необходимых сооружений и оборудования.

Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии. Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии — энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

На рисунке показана схема работы атомной электростанции с двухконтурным водоводяным энергетическим реактором . Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины , вращающие электрогенераторы . На выходе из турбин пар поступает в конденсатор , где охлаждается большим количеством воды, поступающим из водохранилища.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер ( ВВЭР-1000 ).

Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий , свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, реакторы на быстрых нейтронах — два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях ( градирнях ), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Любая работающая АЭС оказывает влияние на окружающую среду по четырём направлениям:

• газообразные (в том числе радиоактивные) выбросы в атмосферу;

• выбросы большого количества тепла;

• распространение вокруг АЭС жидких радиоактивных отходов.

• Создание так называемых атомоградов.

В процессе работы реактора АЭС суммарная активность делящихся материалов возрастает в миллионы раз. Количество и состав газоаэрозольных выбросов радионуклидов в атмосферу зависит от типа реактора, продолжительности эксплуатации, мощности реактора, эффективности газо- и водоочистки. Газоаэрозольные выбросы проходят сложную систему очистки, необходимую для снижения их активности, а затем выбрасываются в атмосферу через высокую трубу, предназначенную для снижения их температуры.

Основные компоненты газоаэрозольных выбросов — радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и активированных продуктов коррозии, летучие соединения радиоактивного йода. В общей сложности в реакторе АЭС из уранового топлива образуются посредством деления атомов около 300 различных радионуклидов, из которых более 30 могут попасть в атмосферу.

Выберите из предложенного перечня два верных утверждения и запишите номера, под которыми они указаны.

1. Газоаэрозольные выбросы АЭС проходят сложную систему очистки, необходимую для снижения их активности, а затем выбрасываются в атмосферу через высокую трубу, предназначенную для снижения их температуры.

2. От работы АЭС нет вредных отходов.

3. В АЭС всегда используются два водных контура.

4. Иногда вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях.

По таблице найдите вещество с самой большой критической температурой.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела). Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления. В таблице приведены термодинамические показатели некоторых жидкостей. β — это коэффициент объемного теплового расширения.

Вещество Формула кг/м 3 атм с, Дж/(г ċ К)
Анилин 102 (15) −6 184 426 52,4 2,156 85
Ацетон 792 −95 56,5 235 47 2,18 143
Бензол 897 5,5 80,1 290,5 50,1 1,72 122
Вода 998,2 0 100 374 218 4,14 21
Глицерин 1260 20 290 2,43 47
Метиловый спирт 792,8 −93,9 61,1 240 78,7 2,39 119
Нитробензол 1173,2 (25) 5,9 210,9 1,419
Сероуглерод 1293 −111 46,3 275 77 1
Спирт этиловый 789,3 −117 78,5 243,5 63,1 2,51 108
Толуол 867 −95,0 110,6 320,6 41,6 1,616 (0) 107
Углерод четырёххлористый 1595 −23 76,7 283,1 45 122
Уксусная кислота 1049 16,7 118 321,6 57,2 260 (1—8) 107
Фенол 1073 40,1 181,7 419 60,5
Хлороформ 1498,5 (15) −63,5 61 260 54,9 0,96
Эфир этиловый 714 −116 34,5 193,8 35,5 2,34 163

Твсп – важный показатель пожарной опасности жидкости. По ней все жидкости разделяются на классы:

1 класс — температура вспышки до 28оС в закрытом тигле (ацетальдегид, бензол, гексан, диэтиловый эфир, изопропиловый спирт).

2 класс — температура вспышки от 29 до 61оС (бутиловый спирт, кумол, стирол).

Жидкости 1 и 2 классов относятся к ЛВЖ (легковоспламеняющиеся жидкости).

3 класс — температура вспышки от 62 до 120оС (анилин, этиленгликоль).

4 класс — температура вспышки выше 120оС (глицерин, трансформаторное масло).

Жидкости 3 и 4 классов относятся к ГЖ (горючая жидкость).

Температура воспламенения — наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания возникает устойчивое пламенное горение.

Пусковые жидкости — это вспомогательные средства, позволяющие улучшить воспламеняемость топлив. Необходимость в них может возникнуть в холодное время года при недостаточной испаряемости бензина или неудовлетворительных теплофизических свойствах горючей смеси дизельного топлива с воздухом. Пусковые жидкости вводятся в топливо при помощи специальных устройств. Наиболее удобны аэрозольные баллоны, из которых смесь распыливается на воздушный фильтр. В двигателях, использующих бензин и дизельное топливо, принцип действия пусковых жидкостей различен. Проблема возникающая при холодном пуске бензинового двигателя, заключается в недостаточной испаряемости бензина при низкой температуре, в результате чего состав образующейся горючей смеси далек от оптимального. Из-за этого продолжительность пуска возрастает. Это приводит к повышению пусковых износов, росту расхода топлива и увеличению эмиссии токсичных продуктов неполного сгорания, характерных для пускового периода. Если концентрация бензина в горючей смеси ниже нижнего концентрационного предела воспламенения (КПВ), то смесь вообще не воспламенится. Поэтому в основу составов для пуска холодных карбюраторных двигателей входят легколетучие жидкости с широкими КПВ.

Источник

Читайте также:  Как называется основной прибор применяемый в астрономии
Оцените статью
Электроника