Линейчатый поглощения полосатый непрерывный излучения спектры сплошной

Виды спектров. Спектральный анализ.

Спектральный состав излучения атомов различных веществ весьма разнообразен. Тем не менее, все спектры можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные (сплошные) спектры. В непрерывном спектре излучения (Рис 4.12.1) представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу с плавным переходом от одного цвета к другому.

Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры. Линейчатые спектры излучения (Рис 4.12.2,3,4) представляют собой набор цветных линий различной яркости, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину. Линейчатые спектры дают все вещества в газообразном атомарном (но не в молекулярном) состоянии. Изолированные атомы химического элемента излучают строго определенные длины волн, характерные данному химическому элементу. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные стационарные состояния со своим набором энергетических уровней.

Читайте также:  С увеличением ускоряющего напряжения в трубке рентгеновское излучение имеет большую

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатые спектры излучения состоят из отдельных полос, разделенных темными промежутками (Рис 4.13: а, б). С помощью очень хорошего спектрального прибора можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Спектры поглощения. Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии поглощения (Рис. 4.14). Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения. Спектры поглощения могут быть непрерывными, линейчатыми и полосатыми.

Атом, поглощая свет, переходит из основного состояния в возбужденное, причем для возбуждения атомов пригодны строго определенные кванты энергии , соответствующие данному газу. Поэтому газ поглощает из непрерывного спектра те самые кванты света, которые может излучать сам.

На рисунках 4.12 и 4.14 сопоставлены спектры испускания и поглощения разреженных паров натрия, водорода и гелия. Изучая спектры испускания и поглощения атомов, еще в 19 веке физики пришли к выводу, что атом не является неделимой частицей, а обладает некоторой внутренней сложной структурой.

Использование линейчатых спектров лежит в основе спектрального анализа – метода исследования химического состава веществ по их спектрам. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой. Спектральный анализ сыграл большую роль в науке. Например, в спектре Солнца (1814) были открыты фраунгоферовы темные линии, происхождение которых объясняется следующим образом. Солнце, являясь раскаленным газовым шаром (Т

6000 °С), испускает сплошной спектр.

Солнечные лучи проходят через атмосферу Солнца (солнечную корону, температура которой

2000-3000 °С. Корона поглощает из сплошного спектра излучение определенной частоты, а на Земле регистрируется солнечный спектр поглощения (рис. 4.14.5), по которому можно определить, какие химические элементы присутствуют в короне Солнца. По спектрам поглощения на Солнце были обнаружены все земные элементы, а также неизвестный ранее элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу на Земле было открыто еще 25 химических элементов.

Более того, спектральный анализ Солнца и звезд показал, что входящие в их состав химические элементы имеются и на Земле, т.е. вещество Вселенной состоит из одного и того же набора элементов. Из-за своей сравнительной простоты и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии и машиностроении. С помощью спектрального анализа определяют химический состав руд и минералов как по спектрам испускания, так и по спектрам поглощения. Состав сложных смесей анализируется по молекулярным спектрам. При определенных условиях методами спектрального анализа можно не только определить химический состав компонент, но и их количественное содержание.

Источник

ИНФОФИЗ

Весь мир в твоих руках — все будет так, как ты захочешь *Репетитор по физике онлайн*

Весь мир в твоих руках — все будет так, как ты захочешь *Репетитор по физике онлайн*

Как сказал.

Все знают, что это невозможно. Но вот приходит невежда, которому это неизвестно — он-то и делает открытие.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 52. Виды спектров. Различные виды электромагнитных излучений, их свойства.

Совокупность монохроматических компонент в излучении называется спектром.

Спектры излучения

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Непрерывный спектр представлет собой сплошную разноцветную полосу.

Белый свет имеет непрерывный спектр. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр. Они делятся на:


Линейчатые спектры

Линейчатый спектр состоит изотдельных цветных линий различной яркости, разделенных широкими темными полосами.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.

С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Это будет спектр поглощения.

Спектр поглощения представляет собой темные линии на фоне непрерывного спектра источника.

Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Различные виды электромагнитных излучений, их свойства и практические применения.

Шкала электромагнитных волн. Границы между различными диапазонами условны

Постоянный ток – частота ν = 0 – 10 Гц.

Атмосферные помехи и переменный ток – частота ν = 10 – 10 4 Гц

Длина волны λ = 10 -3 – 10 3 м

Получают с помощью колебательных контуров.

Радиоволны различных частот и с различными длинами волн по разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Радиосвязь, телевидение, радиолокация.

Частота ν =3·10 11 – 4·10 14 Гц

Длина волны λ = 8·10 -7 – 2·10 -3 м

Излучаются атомами и молекулами вещества.

Инфракрасное излучение дают все тела при любой температуре. Человек излучает электромагнитные волны λ ≈ 9·10 -6 м.

  • Проходит через некоторые непрозрачные тела, а также сквозь снег, дождь, дымку.
  • Производит химическое действие на фотопластинки.
  • Поглощаясь веществом, нагревает его.
  • Вызывает внутренний фотоэффект у германия.
  • Невидимо.
  • Способно к явлениям интерференции и дифракции.
  • Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Получают изображения предметов в темноте, приборах ночного видения, в тумане. Используют в криминалистике, в физиотерапии,. в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

Частота ν =4·10 14 – 8·10 14 Гц

Длина волны λ = 8·10 -7 – 4·10 -7 м

Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Частота ν =8·10 14 – 3·10 15 Гц

Длина волны λ =·10 -8 – 4·10 -7 м (но меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца(кварцевые лампы).

Излучается всеми твердыми телами, у которых t > 1000°С, а также светящимися парами ртути.

  • Высокая химическая активность (разложение хлорида серебра, свечение кристаллов сульфида цинка).
  • Невидимо.
  • Большая проникающая способность.
  • Убивает микроорганизмы.
  • В небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменение в развитии клеток и обмене веществ, действие на глаза.

В медицине, в косметологии (солярий, загар), в промышленности.

Частота ν =3·10 15 – 3·10 19 Гц

Длина волны λ =·10 -11 – 4·10 -8 м

Излучаются при резком торможении электронов, движущихся с большим ускорением.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм).

  • Интерференция, дифракция рентгеновских лучей на кристаллической решетке.
  • Большая проникающая способность.
  • Облучение в больших дозах вызывает лучевую болезнь.

В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма – излучение (γ – излучение).

Частота ν =3·10 20 Гц и выше

Источники: атомное ядро (ядерные реакции).

  • Имеет огромную проникающую способность.
  • Оказывает сильное биологическое воздействие.

В медицине, в производстве (γ – дефектоскопия).

Источник

Оцените статью
Электроника