Какую ткань применяют для защиты от электромагнитного излучения радиочастотного диапазона

Защита от ЭМИ радиочастотного диапазона — комплект спецодежды из специальной металлизированной ткани

Такая серьезная и весьма актуальная сегодня проблема, как защита от ЭМИ (электромагнитного излучения), возникла как следствие развития современного оборудования с применением новейших мощных источников ЭМИ. К ним относятся: теле и радио предающие устройства, передающее оборудование мобильной связи, локационные объекты и т.п.

На сегодняшний день существует несколько способов защиты от электромагнитного излучения:

  1. Стационарный
  2. Защита временем и расстоянием
  3. Защита с применением СИЗ

Наиболее оптимальная защита от ЭМИ в современных условиях производства обеспечивается с помощью СИЗ (средства индивидуальной защиты). Одно из таких средств – комплект ЭИ-2 – производит «НПО «Энергоформ», обеспечивающий гарантированную защиту человека от поражающих факторов вне зависимости от уровня ЭМИ и времени проведения работ. Комплект создает замкнутое пространство вокруг тела человека, исключающее проникновение электромагнитного поля внутрь экранированного пространства.
Комплект состоит из:

  • экранирующего комбинезона;
  • экранирующего головного убора (шлема) с экраном для лица;
  • экранирующих перчаток;
  • кожаных экранирующих ботинок;
  • пояс с монтерской сумкой для инструмента;

ЗАО «НПО Энергоформ» является лидирующим специалистом в области производства средств индивидуальной защиты уже более 15 лет. Ежегодно «НПО Энергоформ» выпускает более 5000 комплектов индивидуальной защиты, посредством которых обеспечивается эффективная защита от ЭМИ на действующем оборудовании.

Copyright © 2003-2016 Web-industry
Все Права Защищены copy

Источник

СРЕДСТВА ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ РАДИОЧАСТОТ

Защита персонала от воздействия электромагнитных полей радио­частот (ЭМИ РЧ) осуществляется путем проведения организационных и инженерно-технических, лечебно-профилактических мероприятий, а также использования средств индивидуальной защиты.

Читайте также:  Какие существуют приборы радиационной и химической разведки

К организационным мероприятиям относятся: выбор рациональ­ных режимов работы оборудования; ограничение места и времени нахождения персонала в зоне воздействия ЭМИ РЧ (защита расстоя­нием и временем) и т.п.

Инженерно-технические мероприятия включают: рациональное размещение оборудования; использование средств, ограничивающих поступление электромагнитной энергии на рабочие места персонала (поглотители мощности, экранирование, использование минимальной необходимой мощности генератора); обозначение и ограждение зон с повышенным уровнем ЭМИ РЧ.

Лечебно-профилактические мероприятия осуществляются в целях предупреждения, ранней диагностики и лечения нарушений в состоя­нии здоровья работника, связанные с воздействием ЭМИ РЧ, и включают предварительные при поступлении на работу и периодиче­ские медицинские осмотры.

К средствам индивидуальной защиты относятся защитные очки, щитки, шлемы, защитная одежда (комбинезоны, халаты и т.д.).

Способ защиты в каждом конкретном случае должен определяться с учетом рабочего диапазона частот, характера выполняемых работ, необходимой эффективности защиты.

Классификация методов защиты человека от ЭМИ РЧ представлена на рис. 4.8.

Рис. 4.8. Классификация защитных методов и средств защиты от электромагнитных излучений радиочастот

В поглощающих экранах используются специальные материалы, обеспечиваю-щие поглощение излучения соответствующей длины вол­ны. В зависимости от излучае-мой мощности и взаимного расположения источника и рабочих мест конструктивное решение экрана может быть различным (замкнутая камера, щит, чехол, штора и т. д.).

При изготовлении экрана в виде замкнутой камеры вводы волно­водов, коаксиальных фидеров, воды, воздуха, выводы ручек управления и элементов настройки не должны нарушать экранирующих свойств камеры.

Экранирование смотровых окон, приборных панелей проводится с помощью радиозащитного стекла. Для уменьшения просачивания электромагнитной энергии через вентиляционные жалюзи последние экранируются металлической сеткой либо выполняются в виде запре­дельных волноводов.

Уменьшение утечек энергии из фланцевых сочленений волноводов достигается путем применения «дроссельных фланцев», уплотнения сочленений с помощью про-кладок из проводящих (фосфористая брон­за, медь, алюминий, свинец и другие метал-лы) и поглощающих мате­риалов, осуществления дополнительного экранирования.

Средства индивидуальной защиты следует использовать в случаях, когда снижение уровней ЭМИ РЧ с помощью общей защиты техни­чески невозможно. Если защитная одежда изготовлена из материала, содержащего в своей структуре металлический провод, она может использоваться только в условиях, исключающих прикосновение к открытым токоведущим частям установок.

При работе внутри экранированных помещений (камер) стены, пол и потолок этих помещений должны быть покрыты радиопоглощающими материалами. В случае неправильного излучения допускается при­менение поглощающих покрытий только на соответствующих участках стен, потолка, пола.

В тех случаях, когда уровни ЭМИ РЧ на рабочих местах внутри экранирован-ного помещения превышают ПДУ, персонал необходимо выводить за пределы камер.

В зависимости от условий облучения, характера и места нахождения источников ЭМИ РЧ могут быть применены различные средства и методы защиты от облучения: защита временем; защита расстоянием; экранирование источника излучения; уменьшение излучения непос­редственно в самом источнике излучения; экранирование рабочих мест; средства индивидуальной защиты; выделение зон излучения.

Защита временем предусматривает ограничение времени пребыва­ния человека в электромагнитном поле и применяется, когда нет возможности снизить интенсивность излучения до допустимых значе­ний.

Значения предельно допустимых уровней напряженности электри­ческой (ЕПДУ) и магнитной (НПДУ) составляющих в зависимости от продолжительности воздействия приведены в табл. 4.1.

Таблица 4.1. Предельно допустимые уровни напряженности электрической ЕПДУ и магнитной НПДУ составляющих в диапазоне частот 30 кГц. 300 МГц в зависимости от продолжительности воздействия

Продолжительность воздействия, t, ч ЕПДУ, В/м НПДУ, А/м
0.03. 3 Мгц 3. 30 Мгц 30. 300 МГц 0,03. 3 МГц 30. 50 Мгц
8,0 и более 5,0 0,30
7,5 5,0 0,31
7,0 5,3 0,32
6,5 5,5 0,33
6,0 5,8 0,34
5,5 6,0 0,36
5,0 6,3 0,38
4,5 6,7 0,40
4,0 7,1 0,42
3,5 7,6 0,45
3,0 8,2 0,49
2,5 8,9 0,54
2,0 10,0 0,60
1,5 11,5 0,69
1,0 14,2 0,85
0,5 20,0 1,20
0,25 28,3 1,70
0,125 40,0 2,40
0,08 и менее 50,0 3,00

Примечание. При продолжительности воздействия менее 0,08 ч дальнейшее повы­шение интенсивности воздействия не допускается.

Значения предельно допустимых уровней плотности потока энер­гии (ППЭПДУ) в зависимости от продолжительности воздействия ЭМИ РЧ приведены в табл. 4.2.

Таблица 4.2. Предельно допустимые уровни плотности потока энергии (ППЭПДУ) в диапазоне частот 300 МГц. 300 ГГц в зависимости от продолжительности воздействия

Продолжительность воздействия, t, ч ППЭПДУ, мкВт/см 2
8,0 и более
7,5
7,0
6,5
6,0
5,5
5,0
4,5
4,0
3,5
3,0
2,5
2,0
1,5
1,0
0,5
0,25
0,20 и менее

Примечание. При продолжительности воздействия менее 0,2 часа дальнейшее повышение интенсивности воздействия не допускается.

Защита расстоянием применяется в том случае, если невозможно ослабить интенсивность облучения другими мерами, в том числе и сокращением времени пребывания человека в опасной зоне. В этом случае прибегают к увеличению расстояния между излучателем и обслуживающим персоналом.

Уменьшение мощности излучения непосредственно в самом источнике излуче-ния достигается за счет применения специальных устройств. С целью предотвращения излучения в рабочее помещение в качестве нагрузки генераторов вместо открытых из-лучателей применяют погло­тители мощности (эквивалент антенны и нагрузки источ-ников ЭМИ РЧ), при этом интенсивность излучения ослабляется до 60 дБ и более. Про-мышленностью выпускаются эквиваленты антенн, рассчитанные на поглощение излу-чения мощностью 5, 10, 30, 50, 100 и 250 Вт с длинами волн 3,1. 3,5 и 6. 1000 см.

Снижение уровня мощности может быть достигнуто с помощью аттенюаторов, которые позволяют ослабить в пределах от 0 до 120 дБ излучение мощностью 0,1; 0,5; 1,5; 10; 50 и 100 ВТ и длинами волн 0,4. 0,6; 0,8. 300 см.

Экранирование источников излучения используется для снижения интенсивности электромагнитного поля на рабочем месте или устра­нении опасных зон излучения. В этом случае применяются экраны из металлических листов или сеток в виде замкнутых камер, шкафов и кожухов.

Основной характеристикой каждого экрана является степень ос­лабления Э электромагнитного поля, называемая эффективностью экранирования, которая представляет собой отношение Е, Н, ППЭ в данной точке при отсутствии экрана к Еэ, Нэ, ППЭэ в той же точке при наличии экрана:

.

Экранирование источников ЭМИ РЧ или рабочих мест осуществ­ляется с помощью отражающих или поглощающих экранов (стацио­нарных или переносных). Отражающие экраны выполняются из металлических листов, сетки, ткани с микропроводом и др. (табл. 4.3).

Таблица 4.3. Экранирующие материалы для изготовления средств защиты от ЭМИ РЧ в диапазоне частот 30 МГц. 40 ГГц

Наименование материала ГОСТ, ТУ Толщина, мм Диапазон частот, Гц Ослабле­ние, дБ
Листовая Ст3 ГОСТ 19903—74 1,4 30 Мгц. 40 ГГц
Фольга алюминиевая ГОСТ 618—73 0,08
Фольга медная ГОСТ 5638—75 0,08
Сетка стальная тканая ГОСТ 5336—73 0,3—1,3
Радиозащитное стекло с одно- или двусторон-ним полупроводнико-вым покрытием ТУ 21 -54-41— 73 30 Мгц — 30 ГГц 20.. .40
Ткань хлопчатобумажная с микропроводом ОСТ 17-28—79 20. 40
Ткань металлизированная «Восход» 10 кГц. ..30 ГГц 40. 65
Ткань трикотажная (полиамид +проволока) Ту-6-06-С202 — 90 300 кГц.. .30 МГц 15. 40

Примечание. На основе экранирующих материалов изготовлены средства индивиду­альной защиты: очки защитные с металлизированными стеклами ОРЗ—5, ТУ 64—1 — 2717—81; щитки защитные лицевые ГОСТ 12.4.023—84.

Источник

Защита от воздействия электромагнитного излучения радиочастотного диапазона

Для защиты населения от воздействия электромагнитного излучения радиочастотного диапазона (ЭМИ РЧ), создаваемого передающими радиотехническими объектами (радиолокационными, радиопередающими, телевизионными станциями, земными станциями спутниковой связи и другими объектами), устанавливаются санитарно-защитные зоны и зоны ограничения застройки.

Санитарно-защитной зоной является площадь, примыкающая к технической территории передающего объекта, внешняя граница которой определяется на высоте 2 м от поверхности земли по ПДУ ЭМП.

Зоной ограничения застройки является территория, где на высоте более 2 м от поверхности земли интенсивность ЭМИ превышает ПДУ. Внешняя граница этой зоны определяется по максимальной высоте зданий перспективной застройки, на высоте верхнего этажа которых интенсивность ЭМИ не превышает ПДУ.

Очевидно, что обе указанные выше зоны определяют расчетным путем и уточняют путем измерений интенсивности ЭМИ. Обязанность проведения расчетов и измерений лежит на владельце радиотехнического объекта.

В санитарно-защитной зоне и зоне ограничений запрещаетсястроительство жилых зданий всех видов, стационарных лечебно-профилактических и санаторно-курортных учреждений, детских дошкольных учреждений, средних учебных заведений всех видов, интернатов всех видов и других зданий, предназначенных для круглосуточного пребывания людей.

Для защиты общественных и производственных зданий в случае необходимости может быть предусмотрено выполнение ограждающих конструкций и кровли из материалов с высокими радиоэкранирующими свойствами (железобетон и др.) или покрытие ограждающих конструкций заземленной металлической сеткой.

Помимо прямого излучения, опасность может представлять вторичное электромагнитное излучение, переизлучаемое элементами конструкции здания, коммуникациями, внутренней проводкой и т.д. Для защиты от него в случае необходимости батареи отопления и другие элементы коммуникаций и сетей следует закрывать диэлектрическими (деревянными и т.п.) коробами, препятствующими непосредственному доступу к этим элементам. Необходимое расстояние между элементом коммуникаций и сетей и коробом определяется путем измерений интенсивности ЭМИ.

Нужно заметить, что каждый передающий радиотехнический объект должен иметь санитарный паспорт. Санитарный паспорт составляется администрацией радиотехнического объекта (его владельцем), подписывается руководителем (владельцем) объекта и согласовывается с руководителем специализированного подразделения надзора за источниками неионизирующих излучений соответствующего учреждения государственного санитарно-эпидемиологического надзора.

Защита персонала.Защита персонала от воздействия ЭМП радиочастотного диапазона осуществляется путем проведения организационных, инженерно-технических, лечебно-профилактических мероприятий, а также использования средств индивидуальной защиты.

К организационным мероприятиям относятся: выбор рациональных режимов работы оборудования; ограничение места и времени нахождения персонала в зоне воздействия ЭМИ РЧ (защита расстоянием и временем) и т.п.

Защита временемпредусматривает ограничение времени пребывания человека в рабочей зоне. Она применяется, когда нет возможности снизить интенсивность излучения до допустимых значений. В диапазоне частот от 30 кГц до 300 МГц допустимое время пребывания определяют по формулам

ч; ч. (7.1)

В диапазоне частот от 300 МГц до 300 ГГц — по формуле

(7.2)

Предельно допустимое время работы вносится в инструкции по технике безопасности и в технологические документы, а на источниках ЭМИ РЧ или в непосредственной близости от них размещаются соответствующие предупреждения. Сокращение продолжительности воздействия должно быть подтверждено технологическими, распорядительными документами и/или результатами хронометража.

Защита расстоянием предполагает увеличение расстояний между излучателем и персоналом. Расстояние, соответствующее предельно допустимой интенсивности облучения, определяется расчетом и проверяется инструментально. На дверях помещений, где имеет место повышенный уровень электромагнитного излучения, а также на приборах и др. размещают знак «Внимание! Электромагнитное поле».

Инженерно-технические мероприятия предусматривают уменьшение мощности излучения в самом источнике, экранирование источников излучения, экранирование рабочих мест, обозначение и ограждение зон Уменьшение мощности излучения в самом источнике излучения достигается применением специальных устройств: поглотителей мощности, эквивалентов антенн, аттенюаторов, направленных ответвителей бронзовых прокладок между фланцами, дроссельных фланцев и др.

Экранирование источников излучения используют для снижения интенсивности ЭМИ РЧ на рабочем месте или ограждения опасных зон излучений. Экраны изготавливают в виде замкнутых камер, шкафов или кожухов.

Обычно в качестве материала экрана применяют металлические листы, которые обеспечивают быстрое затухание поля в материале. Однако во многих случаях выгодно вместо металлического экрана использовать проволочные сетки, фольговые и радиопоглощающие материалы, сотовые решетки. Эффективность экранирования электромагнитного поля при использовании проволочных сеток зависит от диаметра провода и шага сетки.

В перечень фольговых материалов толщиной 0,01. 0,5 мм входят в основном диамагнитные материалы: алюминий, латунь, цинк.

Радиопоглощающие материалы изготовляют в виде эластичных и жестких пенопластов, тонких листов, рыхлой сыпучей массы или заливочных компаундов, специальных красок.

Для придания материалу поглощающих свойств в него вводят проводящие добавки: сажу, активированный уголь, карбонильное железо. Таким образом, проводящие включения создают потери (наведенные вихревые токи превращаются в тепловую энергию).

Основой поглощающих материалов являются каучук, поролон, пенополистирол, краски и другие синтетические материалы.

Уменьшение коэффициентов отражения поглощающих материалов достигается в основном двумя путями. В первом случае материалу придается структура или форма, увеличивающая его активную переднюю поверхность, обращенную к излучению, например, материал делается волокнистым или со сложной, покрытой пирамидами или конусами поверхностью. При такой поверхности волна многократно отражается от неровностей, и общая энергия, прошедшая в материал, оказывается значительно больше, чем при однократном падении на гладкую ровную поверхность. Выполненные по этому способу материалы являются широкополосными, но они чувствительны к действию эрозии, воды, пыли и т д., хотя и обладают малой плотностью. Их толщина находится в пропорции с длиной волны.

В табл. 7.4 приведены характеристики некоторых радиопоглощающих материалов. В последнее время все большее распространение получают керамико-металлические композиции.

Таблица 7.4 Основные характеристики радиопоглощающих материалов

Марка поглотителя и материал, лежащий в его основе Диапазон рабочих вол, см Отражающая мощность, % Масса 1 м 2 материала, кг
СВЧ-068, феррит 15. 200 18. 20
«Луч», древесное волокно 15. 150 1. 3
В2Ф2, резина 0,8. 4 4. 5
В2Ф2; ВКФ1 0,8. 4 4. 5
«Болото», поролон 0,8. 100

Экраны в виде сотовых решеток применяют для экранирования вентиляционных отверстий в экранирующих кожухах аппаратуры (рис. 7.4 а) вплоть до сантиметрового диапазона излучения. Эффективность сотовых решеток зависит от отношения глубины к ширине ячейки. В случае если требуется особенно высокая эффективность экранирования, рекомендуется применять сотовые решетки с пересекающимися ячейками. Такие решетки получают наложением друг на друга тонких решеток в одном экране (рис.7.4 б). Достоинствами сотовых решеток являются небольшой вес, высокие экранирующие свойства, низкое сопротивление воздушному потоку и др.

Рис. 7.4. Экраны в виде сотовых решеток с обычными (а) и

с пересекающимися (б) ячейками

Экранирование рабочего места применяется в случае, когда невозможно осуществить экранирование аппаратуры. Оно достигается с помощью сооружения кабин либо ширм с покрытием из поглощающих материалов. В качестве экранирующего материала для окон, приборных панелей применяется стекло, покрытое полупроводниковым двуоксидом олова.

Средствами индивидуальной защиты (СИЗ) следует пользоваться в тех случаях, когда применение других способов предотвращения воздействия ЭМИ РЧ невозможно. В качестве СИЗ применяют халат, комбинезон, капюшон, защитные очки. Материал, из которого изготавливают СИЗ, представляет собой специальную ткань, которую получают, либо вводя в состав ткани тонкие металлические нити, образующие сетку, либо методом химической металлизации (из растворов) суровых тканей различной структуры и плотности.

Для защиты органов зрения применяют сетчатые очки, имеющие конструкцию полумасок из медной или латунной сетки, и очки ОРЗ05 (очки радиозащитные) со специальным стеклом с токопроводящим слоем двуоксида олова.

В настоящее время компьютеры и оргтехника широко применяются во всех областях деятельности человека. При работе с компьютером человек подвергается воздействию негативных факторов: электромагнитных полей (диапазон радиочастот: ВЧ, УВЧ и СВЧ), инфракрасного и ионизирующего излучений, шума и вибрации, статического электричества.

Типичными ощущениями, испытываемыми пользователями к концу рабочего дня, являются: головная боль, резь в глазах, боль в мышцах рук и спины, зуд лица и т.д. ЭМИ могут привести к мигреням, частичным потерям зрения, воспалениям кожи. Учеными США, Австралии, Германии выявлена определенная связь между работой на компьютере и такими недомоганиями, как стенокардия, боли в спине и шее, сыпь на лице, хронические головные боли, головокружение, нарушение сна.

Основные проблемы возникают из-за дисплеев (мониторов), особенно с электронно-лучевыми трубками (ЭЛТ). Спектр излучений монитора включает: рентгеновское, ультрафиолетовое, инфракрасное, электромагнитное. Опасность рентгеновского излучения большинством ученых признается пренебрежимо малой, поскольку они невелики либо поглощаются защитным покрытием экрана.

Электромагнитное излучение обладает необычным свойством: опасность его воздействия не уменьшается при снижении интенсивности излучения. Некоторые электромагнитные поля действуют на клетки тела только при малой интенсивности.

Отсутствие ЭЛТ у компьютеров с монитором на жидкокристаллической основе типа Notebook не делает работу за ним менее безопасной, скорее наоборот. Здесь на первое место, как и положено, по степени опасности выходит ЭМИ, так как «лучит» не только электронно-лучевая трубка, но и системный блок (в частности преобразователь напряжения питания) и даже клавиатура.

Проведенные в Японии медицинские обследования 7 тыс. служащих, которые работали с персональными компьютерами три месяца, показали, что более 80 % из них жаловались на боль в глазах, из них 46 % стали близорукими, а 34 % заявили, что работа сделала их раздражительными.

Особенно вредным оказывается воздействие на человека излучения очень низкой частоты. Например, напряженность магнитного поля в пределах 4 миллигаусс (чем грешат ЭЛТ) вызывает изменения в клетках тела. Научно-консультационный центр компьютерной безопасности отмечает, что около 80 % пользователей персональными компьютерами нуждаются в офтальмологической помощи. Работа за монитором персонального компьютера ведет к необратимой слепоте — к такому мнению пришли японские ученые. Достаточно 8…10 лет работы за компьютером, чтобы приобрести глаукому — опасное, мучительное и неизлечимое заболевание.

В Японии «компьютерная жизнь» началась 20 лет назад, когда никто не задумывался о безопасности. А сегодня Япония — самая «слепая» страна мира.

Излучения дисплея в прямом смысле «выжигают» хрусталик и сетчатку глаза. Смотреть на монитор без защиты — значит, сознательно обрекать себя на слепоту. Но парадокс в том, что современный человек без компьютера существовать не может.

Абсолютную защиту на сегодняшний день могут обеспечить только специальные очки. В Японии, США и многих странах Евросоюза с 2001 г. наличие компьютерных очков на каждом рабочем месте строго обязательно и регламентируется трудовым законодательством.

В настоящее время существуют специальные очки «Vizonix», которые пропускают только видимый свет. Пользователи сравнивают ощущения при работе за монитором в этих очках с чтением обыкновенной книги. Глаза не устают после 4, 6 и даже после 8 часов работы.

Гигиенические требования к персональным электронно-вычислительным машинам и организации работы нашли отражение в СанПиН 2.2.2/2.4.1340-03, которые действуют на всей территории РФ и определяют требования к проектированию, изготовлению и эксплуатации отечественных и импортных ПЭВМ, используемых на производстве, в обучении; в быту. Эти требования отвечают известному своей строгостью шведскому стандарту MPR11, а также международному европейскому стандарту ISO 9241.

Каждое рабочее место в компьютерном классе создает своеобразное электромагнитное поле радиусом 1,5 м и более, причем излучение идет не только от экрана, но и от задней и боковых стенок монитора.

Допустимые уровни электромагнитных полей (ЭМП), создаваемых ПЭВМ:

— напряженность электрического тока:

при частоте 5 Гц…2 кГц — 25 В/м;

при частоте 2 кГц…400 кГц — 2,5 В/м;

— электростатический потенциал экрана видеомонитора — 500 В;

— магнитная индукция В на расстоянии 0,5 м вокруг дисплея не должна превышать:

250 нТл – в диапазоне частот 5 Гц…2 кГц;

25 нТл – в диапазоне частот 2…400 кГц.

Помещения, где размещаются рабочие места с ПЭВМ, должны быть оборудованы защитным заземлением (занулением) в соответствии с Межотраслевыми правилами по охране труда при эксплуатации электроустановок.

Помещения для эксплуатации ПЭВМ должны иметь естественное и искусственное освещение. Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300…500 лк. Освещение не должно создавать бликов на поверхности экрана. В компьютерных помещениях должны обеспечиваться оптимальные параметры микроклимата: температура 19…21 °С, относительная влажность 62…65 %, абсолютная влажность — 10 г/м, скорость движения воздуха менее 0,1 м/сек.

Площадь на одно рабочее место пользователей ПЭВМ с ВДТ на базе электронно-лучевой трубки (ЭЛТ) должна составлять не менее 6 кв. м.

Уровни звука не должны превышать 50 дБА.

Экран видеомонитора должен находиться от глаз пользователя на расстоянии 600…700 мм, но не ближе 500 мм. Лица, работающие с ПЭВМ более 50 % рабочего времени, должны проходить обязательные предварительные при поступлении на работу и периодические медицинские осмотры в установленном порядке.

В работе с компьютером широко используется принцип защиты временем. В зависимости от вида трудовой деятельности с ЭВМ (а именно, считывания информации, ввода информации, творческой работы в диалоговом режиме) и категории напряженности работы Санитарными правилами установлены регламентированные перерывы от 30 до 70 мин. При работе в ночное время общая продолжительность перерывов увеличивается на 60 минут. Санитарными нормами резко сокращено время занятий с ПЭВМ для учащихся школ (для начальной школы 10…15 минут, для старшеклассников 30…40 минут). Для взрослых пользователей можно рекомендовать, чтобы суммарное время работы с ВДТ в течение рабочего дня не превышало 4 часов, а продолжительность непрерывной работы была не более 1,5…2 часов. После каждого часа работы следует делать перерыв, как минимум, на 10…15 минут, во время которого необходимо встать и выполнить ряд упражнений для глаз, поясницы, рук и ног. Беременным женщинам во избежание патологий вообще не разрешается работать за компьютером с момента установления беременности.

Кроме ЭМП, на пользователя в работе с компьютером негативно воздействуют: статичность рабочей позы и непрерывная работа с клавиатурой, приводящие к костно-мышечным напряжениям; некачественные визуальные параметры монитора и световой среды, сильно влияющие на зрение; необходимость активного внимания и ответственность за результаты, вызывающие нервное напряжение; а также неблагоприятный микроклимат на рабочем месте (выделения тепла и вредных веществ при длительной работе компьютеров, шум, потенциальный риск возгорания и поражения электрическим током).

Источник

Оцените статью
Электроника