Каковы причины рассеивания ионизирующего излучения в сварке

Излучение сварочной дуги

Известно, что от дуги идет сильное излучение. Одной вспышки достаточно, что бы в глазах появилось ощущения шершавого песка. Однако не многие знают, что реальное излучение многократно выше, чем мы можем видеть. Дело в том, что около 70% лучевой энергии выделяется в виде ультрафиолета. 15% в виде инфракрасного излучения, это все не видимые для человеческого глаза лучи и только 15% в виде видимого света. Спектр излучения дуги Вы можете найти в графике ниже.

Рассмотрим сварочный ультрафиолет. Его спектр имеет 3 составляющих. Короткий средневолновый и длинный ультрафиолет. С длинным ультрафиолетом живые организмы на земле научились сосуществовать. По-другому дело обстоит со средним и коротковолновым излучением. От этого крайне опасного космического излучения нас спасает озоновый слой. При сварке от средне и коротковолнового ультрафиолета может спасти только правильно подобранные средства защиты. Это крайне опасное излучение для кожи и глаз. К сожалению не все средства защиты выдерживают это испытание. Данный ультрафиолет имеет глубокую проникающую способность и способен проникать сквозь индивидуальные средства защиты. Опытные сварщики знают, что после долгой работы в паранитовой маске лицо краснеет. Это значит, что этот корпус маски не защищает лицо сварщика от коротковолнового ультрафиолета. У производителей масок имеется понятие, тон пропускания ультрафиолета корпуса маски. Это тон для высококачественных масок варьируется в пределах 13-16 DIN. К сожалению эти характеристики не принято показывать. Сварочное стекло и самозатемняющийся картридж, тоже должен иметь защиту от ультрафиолета.

Читайте также:  Где находится датчик скорости АКПП на Peugeot 308?

Самозатемняющиеся картриджи даже в открытом состоянии должны иметь степень затемнения по отношению к ультрафиолету не менее 13 DIN. Эта характеристика указывается производителями и должна быть в пределах от 13 DIN и больше. Маска сварщика Tecmen имеет постоянную защиту DIN 16 от ИК и УФ типов излучения, что подтверждено сертификатом соответствия Таможенного Союза.

Инфракрасное излучение не столь опасно как ультрафиолетовое, но оно может привести к головной боли и преждевременному переутомлению. Как результат к большей вероятности брака и производственного травматизма.

Источник

Защита от ионизирующего излучения

Темы : Техника безопасности при сварке, Источники ионизирующего излучения.

Средства защиты от ионизирующего излучения разрабатывают, учитывая категорию облучаемых лиц и длительность облучения. Для лиц категории A мощность эквивалентной дозы нa поверхности защиты нe должна превышaть 1,4 мбэp/ч (1,5 мP/ч) пpи 36-часововой рабочей неделе, a для категории Б — 0,12 мбэp/ч пpи 41-часовой рабочей неделе. Защита от ионизирующего излучения проводится методамии аналогичными изложенным для электромагнитных полей — см. Защита от электромагнитных полей.

Защита от ионизирующего излучения

Основной применяемый метод — экранирование. Далее для этого метода рассмотрена защита от ионизирующего излучения экранами, расчет толщины этих экранов при разных типах излучений и для различных материалов этих экранов (бетон, сталь, свинец).

Рис. 1. Номограммы для расчета защитных экранов от γ-излучения .

Толщина защитных экранов зависит от вида и энергии излучения, свойств материала экрана и необходимой кратности ослабления излучения

Кo =(Н/Нн)=(Н’ /Н’н)’ гдe Н и Н’ — эквивалентная доза, бэр (мбэр, мкбэр), и ее мощность, бэр/год (мбэр/ч, мкбэр/ч) ; НН и Н’н — нормативныe значения.

Прямое γ-излучение . Чаще всего толщину экрана из железа, свинца, бетона d, в cм, определяют пo графикам и номограммам (pис. 1) или пo таблицам, взятым из публикаций.

Если известна толщина экрана d1 из материала плотностью ρ1, то толщина экрана d2 из материала плотностью ρ2, близкой к плотности ρ1, может быть определена из соотношения d2 = d1 ρ12.

Рассеянное γ-излучение . Энергия рассеянного излучения 0,15. 0,2 MэВ. При расчете защиты принимaют излучение, рассеянное пoд углом 90° с интенсивностью нa расстоянии 1 м oт рассеивающей поверхности, равнoй 0,1 % прямого излучения. Экран из свинца, железа, бетона пpи десятикратном ослаблении имеет толщину соответственно 0,2; 1,5; 8 см.

Прямое рентгеновское излучение . При напряжении на аноде рентгеновской трубки 75 . 300 кВ толщина защитного экрана из свинца, бетона определяется по данным табл. 1 в зависимости от коэффициента k2 = k3 I / R 2 (категория А) и k2 = I • 10 R 2 (категория Б), где kз — коэффициент запаса, равный 2; I — сила тока в трубке, мA; R — расстояние между трубкой и рабочим.

Рассеянное рентгеновское излучение . Толщина экрана из свинца и бетона определяется по табл. 2 (R — расстояние oт места рассеяния излучения дo рабочего места, м).

Неиспользуемое рентгеновское излучение . Мощность экспозиционной дозы нa расстоянии 5 см oт корпуса камеры электронно-лучевой сварки не должна превышать 0,28 Р/ч. Толщина защитной стенки из свинца и стали при заданной кратности ослабления может быть определена пo табл. 3 и 4.

Таблицa 1. Толщина защитного экрана, в мм, из свинца и бетона от прямого рентгеновского излучения .

Таблица 2. Толщина защитного экрана, в мм, из свинца и бетона от рассеянного рентгеновского излучения .

Таблицa 3. Толщина защиты из свинца, служащей для ослабления неиспользованного рентгеновского излучения, мм .

Таблица 4 Толщина защиты из стали для ослабления неиспользованного рентгеновского излучения, мм .

Источник

Ионизирующее излучение

Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.

Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей, представляющих собой одну из составляющих естественного ионизирующего излучения.

Результат действия ионизирующего излучения называют облучением. Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения.

Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.

В быту и в некоторых отраслях науки, техники и медицины ионизирующее излучение принято называть просто радиацией. Строго говоря, это не совсем верно, т.к. сам по себе термин «радиация» охватывает все виды излучения, включая самые длинные радиоволны и потоки частиц любой сколь угодно малой энергии, а также волны деформации в веществе, например, звуковые волны. Тем не менее, употребление слова «радиация» применительно к ионизирующему излучению настолько вошло в привычку, что в науке прижились термины, сформированные на его основе, такие, как, например, радиология (наука о медицинских применениях ионизирующего излучения), радиационная защита (наука о методах снижения доз облучения до приемлемых уровней), естественный радиационный фон, и т.п.

Виды ионизирующих излучений

Ионизирующее излучение (ИИ) — поток микрочастиц или электромагнитные поля, способные ионизировать вещество. В жизни, под ионизирующим излучением понимают проникающую радиацию — поток гамма-лучей и частиц (альфа, бета, нейтронов и др.).

Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно. При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти. Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.

Чаще всего ионизирующие излучения делят на:

  • корпускулярное ионизирующее излучение и
  • электромагнитное (фотонное) ионизирующее излучение.

Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:

  • заряженные частицы, в том числе,
  • легкие заряженные частицы (электроны и позитроны);
  • тяжелые заряженные частицы (мюоны, пионы и другие мезоны, протоны, заряженные гипероны, дейтроны, альфа-частицы, и другие ионы);
  • электрически нейтральные частицы (нейтрино, нейтральные пионы и другие мезоны, нейтроны, нейтральные гипероны).

Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага полностью защищают организм от внешних потоков альфа-частиц.

*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.

Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.

Гамма-излучение — сопутствующее ядерным превращениям электромагнитное излучение. Сегодня к гамма-излучению относят также жесткое рентгеновское излучение. Обладает очень высокой проникающей способностью. Оградить себя от гамма-излучения практически невозможно, однако можно ослабить его до приемлемого уровня. Защитные средства, обладающие экранирующим действием от такого рода радиации, выполняются из свинца, чугуна, стали, вольфрама и других металлов с высоким порядковым номером.

*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.

Нейтронное излучение – поток нейтронов – тяжелых частиц, входящих в состав ядра. Для защиты от этого излучения можно использовать убежища, противорадиационные укрытия, дооборудованные подвалы и погреба. Потоки нейтронов, как и потоки гамма-излучения невозможно полностью экранировать. Быстрые нейтроны сначала надо замедлить в воде, полиэтилене, парафине, можно в бетоне, а затем их необходимо поглотить, например, в кадмиевой фольге, за которой должен стоять достаточный слой свинца, чтобы экранировать возникающее при захвате нейтронов ядрами кадмия высокоэнергетическое гамма-излучение. Поэтому защита от нейтронов, как правило, делается комбинированной .

По подсчетам научного комитета по действию атомной радиации ООН, средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет приблизительно 350 мкЗв, то есть немного больше средней дозы облучения через радиационный фон, который образуется космическими лучами.

Для улучшенной консервативной оценки эквивалентной дозы, в целях индивидуальной дозиметрии профессионально облучаемых работников и мониторинга рабочих мест вводят модельную, т.н. рабочую величину, именуемую амбиентным эквивалентом дозы.

К основным радиоактивным явлениям относятся: a -распад, ß± -превращения (распады) и y-излучение. К явлениям ß-превращений относятся следующие самопроизвольные процессы: ß- -превращение (ß- -распад), ß+ -превращение (ß+-распад), электронный захват (e). Также к явлениям радиоактивности относят: спонтанное деление, кластерную активность,нейтронную активность, протонную активность, бета-задержанные распады ядер.

Источник

Что такое ионизирующее излучение?

Виды, источники и влияние ионизирующего излучения на человека

Ионизирующее излучение – это электромагнитное излучение (рентгеновское, гамма) и излучение частиц (альфа, бета), сопровождающиеся выделением энергии. Ионизирующее излучение появляется только при наличии источника излучения (изотопа радиоактивного элемента или рентгеновской трубки). Оно известно в медицине в форме рентгеновского излучения. Используется при диагностике заболеваний сердца и легких, а также при диагностике травм.

Виды ионизирующего излучения

Ионизирующее излучение можно разделить на два вида:

  1. Искусственное – радиоактивные изотопы не встречаются в природе, их генерируют рентгеновские аппараты;
  2. Естественное – встречается в природе, например, в почве, растениях и в космосе.

Электромагнитное ионизирующее излучение используется при проведении радиологических исследований (в просторечии рентгеновских исследований), таких как рентген или КТ (компьютерная томография). С его помощью врач может:

  • осмотреть тело и увидеть структуры органов и тканей;
  • обнаружить множество серьезных заболеваний костей, легких, сердца и других органов.

Ионизирующее излучение частиц можно разделить на:

  • ядерное;
  • космическое;
  • излучение, производимое в ускорителях.

По типу частиц ионизирующее излучение может быть альфа, бета, нейтронное и протонное.

Источники ионизирующего излучения

Источниками ионизирующих излучений являются искусственные и естественные явления, объекты:

  1. Естественные источники – это в первую очередь радиоактивные элементы, присутствующие в земной коре и атмосфере, а также космические лучи;
  2. Искусственные источники – это радиоактивные элементы, производимые в ядерных реакторах (например, плутоний) или устройствах, генерирующих ионизирующее излучение (рентгеновские аппараты, кобальтовые бомбы).

Рассматриваемое излучение всегда сопровождало человека. Каждый день население поглощает радиацию, которая приходит из космоса и исходит от камней и почвы. Источником естественного ионизирующего излучения, среди прочего, является космическое пространство.

Космические лучи, которые состоят из ядер высокоэнергетических атомов (в основном протонов), были открыты в начале 20 века. Человечество и все живое на планете частично защищены от космических лучей атмосферой Земли, которая поглощает энергию падающих частиц. В результате столкновений молекул с ядрами газа (азота, кислорода) в атмосферу испускается вторичное излучение.

Чем толще слой атмосферы, через который проходит излучение, тем слабее оно становится. Следовательно, люди получают гораздо меньшую дозу радиации на уровне моря, чем люди, поднимающиеся в высокие горы.

Важно знать! Люди, летающие по трансконтинентальным маршрутам, получат дозу радиации, примерно равную дозе, связанной с рентгеновским снимком легких.

Источником ионизирующего излучения также являются поверхность и внутренние части Земли, которые содержат богатые ресурсы радиоактивных элементов. В частности, во второй половине XX века в разных регионах планеты началась добыча урановых руд.

Помимо естественных источников ионизирующего излучения, существуют также искусственные источники. Техногенное ионизирующее излучение возникает в результате изменений, происходящих внутри атомных ядер. Эти изменения сопровождаются изменением энергии ядер, а часто и числа нуклонов. Этому особенно подвержены изотопы элементов, содержащие несоответствующее количество нейтронов.

Источники искусственного ионизирующего излучения:

  • медицинское оборудование (рентгеновские аппараты, кобальтовые бомбы);
  • атомные электростанции (реакторы);
  • исследовательские устройства, например, ускорители частиц.

Для справки! Искусственные радиоактивные изотопы, являющиеся источником радиации, широко используются в медицине, промышленности и науке.

Другие источники ионизирующего излучения – испытания ядерных бомб и аварии атомных электростанций. При определенных условиях они могут стать причиной смерти всего живого на планете. Но и без этого рассматриваемое явление может стать причиной серьезных негативных последствий.

Влияние ионизирующего излучения на организм человека

Эффект зависит в основном от нескольких факторов:

  • размер и интенсивность принятой дозы;
  • вид излучения;
  • размер и тип области, обработанной ионизирующим агентом;
  • возраст и пол облученного человека;
  • индивидуальная чувствительность;
  • масса тела;
  • время года (температура окружающей среды).

Действие ионизирующего излучения на организм человека становится причиной специфических биологических эффектов. В силу основных механизмов образования их можно разделить на детерминированные и стохастические.

Детерминированные эффекты являются следствием поглощения человеческим организмом такой большой дозы ионизирующего излучения, что оно вызывает разрушение или необратимое повреждение определенного количества клеток. Проявление детерминированных эффектов – лучевая болезнь.

Стохастические (случайные) эффекты возникают в результате повреждения генетического материала отдельной клетки и проявляются в виде рака или наследственных заболеваний. Доза, вызывающая эти заболевания, может быть сколь угодно низкой, и их начало определяется случайностью.

Если ионизирующее излучение поражает живую ткань, оно может вызвать:

  • молекулярно-липидное повреждение, разрыв цепей ДНК;
  • клеточные изменения – повреждение мембранных структур, ядра и клеточных органелл (нарушение клеточного метаболизма, деградация компонентов клетки и повреждение ее генетического материала).

Естественные и искусственные источники ионизирующего излучения могут привести к прямой или косвенной ионизации материальной среды. Чтобы снизить вред, ученные разрабатывают и внедряют разные способы защиты от ионизирующего излучения – от защитных костюмов, правил использования специальной техники, до восстановления озонового слоя. Последний естественным образом защищает планету от космических лучей.

Источник

Оцените статью
Электроника