Какие приборы используют для измерения шума

Измерение уровня шума: методы, способы, необходимые инструменты и соответствие уровням ГОСТ

Измерять шум необходимо. Ведь существуют опасные шумовые уровни для человеческого здоровья. Например, шум в 70-90 децибел (дБ) – это потенциальная причина нарушения функций нервной системы. Шум, превышающий 100 дБ, отрицательно влияет на слух. А если параметры зашкаливают за 200 дБ, то ситуация крайне опасна и может привести к летальному исходу.

Пребывание людей в помещении получатся комфортным, если шумовой уровень не превосходит 55 дБ днем, а ночью – 45 дБ.

В каждом помещении должен быть определенный уровень. Это регламентировано нормативными документами. И для проверки на это соответствие регулярно измеряют шумовые уровни.

Рабочие зоны

В рабочих зонах на предприятиях промышленного назначения измерение уровня шума происходит минимум в трех точках. Микрофон, анализирующий шум, ставится над полом на высоте 150 см. Он направляется к шумовому источнику и отдаляется от сотрудника, осуществляющего измерение, минимум на 50 см.

При измерении шума выявляются следующие данные:

  1. Совокупные параметры звукового давления.
  2. Спектральная структура шума в октавных волнах.
  3. Эквивалентные звуковые уровни в нормированных децибелах.

При этих замерах определяется, каковы уровни шума, а спектральная экспертиза в его октавных волнах не проводится.

Специалисты анализируют опасность шума по параметрам давления звука в дБА (обозначение интенсивности). При этом учитывают частотные средние геометрические данные.

Санитарные нормативы

Ниже предложена таблица, отражающая наибольшие уровни шума, разрешенные для различных помещений. Это такие уровни, которые в течение всего рабочего времени не должны приводить к проблемам со здоровьем.

Таблица 1. Шум проникает в помещение снаружи.

Параметры звукового давления

1) Зоны интеллектуального труда, приемные покои.

2) Управленческие помещения

3) Будки для дистанционного контроля

4) Те же будки, но с телефонной связью

6)Помещения с очень громкими операционно-вычислительными агрегатами

7) Рабочие зоны в заводских цехах

Сокращения в таблице: СПОВ — средние параметры октавных волн (измерение в Гц), ЗП – звуковой предел, единица измерения – дБА.

Пункты 1-4 контролируются при условиях, что шум образуется снаружи и проникает в помещения

Пункты 5 и 6 необходимы к выполнению, когда шум образуется в помещениях

Методики

Измерение уровня шума обычно происходит по субъективному или объективному методу. Первый основан на использовании фонометров. Они измеряют шум, сопоставляя его с чистым тоном конкретной частоты. Ее генерирует специальный аппарат. Измерительные операции довольно сложны и дают результаты с ограниченным использованием.

Второй метод подразумевает применение шумомеров. Они конвертируют звуковые волны в электрические. После чего сигнал следует на измеритель. К выходному участку усилителя можно присоединять разные фильтры для корректировки сигнала. Они позволяют получить более точные данные об интенсивности шумов конкретных частот.

На сегодняшний день второй метод измерения уровней шума все больше вытесняет первый. И это логично. Ведь работать с фонометрами довольно трудно, и полученные результаты сложно применять.

Принцип и устройство шумомера

Этот прибор производит замер шума в дБ. В его устройстве заложены принципы, создающие точную зависимость между его показателями и давлением звука. Эти факторы воспринимает слуховой аппарат. Между шумовым уровнем и электрическим сигналом существует пропорциональность.

  1. Микрофон
  2. Усилитель.
  3. Фильтры коррекции.
  4. Вольтметр.
  5. Дисплей.
  6. Блок питания.

У аппарата имеется шкала с делениями в дБ и опциональное дополнение в виде штатива.

Есть множество моделей шумомеров. У них разный внешний вид, габариты, стоимость и производитель. Но есть и единая классификация.

Общая классификация шумомеров

Она распределяет прибор по уровню точности. Существует 4 категории:

  1. Нулевая – приборы с лучшей точностью.
  2. Первая – приборы, которые задействуют в лабораториях.
  3. Вторая – модели для производственных условий.
  4. Третья – аппараты для бытового использования, которые дают приблизительные результаты.

Различают следующие классы фильтров шумомеров:

  1. А – для маленькой громкости.
  2. В – для громкости среднего значения.
  3. С – для сильной громкости.

Модели для промышленных условий

Приборы для измерения уровня шума в промышленных условиях отличаются по типам. Наиболее популярными являются такие модели:

  1. Ш-63. К нему монтирован октавный полосный фильтр ПФ-1.
  2. Ш-3М. В его комплекте имеется октавный анализатор ЛИОТ. У прибора есть три переключаемые частотные характеристики.

Октавные анализаторы

Для исследования спектральной структуры шума используются октавные анализаторы. Для вычисления давления звука предназначены октавные полосы.

В них действует следующий принцип: их верхние предельные частоты вдвое уступают нижним предельным частотам. Например: 40–80, 70-140 и т. д.

Характеристика октавной полосы – среднегеометрическая частота f. Она получается из указанных предельных частот, которые обозначаются так:

Среднегеометрическая частота определяется по формуле: f сред =√ f1 f2

Квартирный вопрос

Проводить измерение уровня шума и вибрации в квартире и доме также необходимо. Для процедуры применяются модели третьей категории точности. Они отличаются демократичной ценой и легкостью использования.

Сначала нужно изучить режимы работы устройства. Как правило, их три:

  1. F – для анализа постоянных шумов.
  2. S – для кратких периодических шумов.
  3. I – для импульсных шумов.

Варианты питания прибора: сеть, аккумулятор, батарейки.

Обычно комплект не обходится без чехла и штатива. В некоторых аппаратах есть карта памяти. В ней содержатся реестр предыдущих показателей аппарата.

Применение домашнего шумомера

Проводить измерение уровня шума с помощью этого прибора легко. Он просто подносится к шумовому источнику и включается. Микрофон должен быть открытым. Прибор работает несколько минут, улавливает самый высокий параметр и останавливается на нем.

На дисплее отображается результат экспертизы в децибелах.

Метод онлайн

Наше время – это время прогресса и высоких технологий. Сегодня практически у всех есть компьютер или смартфон. С помощью них тоже можно производить необходимые измерения уровня шума. Здесь главным условием является установка специального приложения. Второй вариант – отыскать шумомер онлайн (ввести такой запрос в поисковике). На ресурсе также будет выложен подробный инструктаж, как нужно действовать.

Это довольно экономичный метод. Он позволяет не приобретать шумомер. Но здесь есть свои тонкости? Показатели на ПК, ноутбуке или смартфоне могут существенно отличаться.

На точность измерительных операций влияют параметры и качество микрофона вашего устройства. Если вас смущает сей факт, то работайте с цифровым шумомером.

Можно приобрести серьезный микрофон, присоединить его к компьютеру. И тогда измерение шума в домашних условиях будет проходить еще легче.

Проверка звукоизоляции

Двери и окна – те элементы, через которые в квартиру могут проникать разные шумы. И поэтому уровень их звукоизоляции имеет большее значение для комфортного проживания.

Этот уровень можно узнать с помощью несложного тестирования. Здесь необходим какой-нибудь шумовой источник. Можно просто включить музыку на телефоне и закрыть дверь.

После чего включается шумомер, проводится измерение, открывается дверь и операция повторяется. У вас получится два показателя прибора. Из большего показателя отнимите меньший. Это и есть уровень изоляции.

Для лучшей точности удостоверьтесь, что в квартире отсутствуют лишние шумы. Еще нужно проверить, что звук не проходит сквозь стены.

Источник

Приборы для измерения шума и вибрации

Основными приборами для измерения шума являются шумомеры. В шумомере механические звуковые колебания, воспринимаемые микрофоном, преобразуются в электрические, которые усиливаются и затем, пройдя через корректирующие фильтры и выпрямитель, регистрируются стрелочным прибором. Диапазон измеряемых суммарных уровней шума обычно составляет 30—130дБ при частотных границах 20—16 000 Гц.

Для определения спектра шума и его уровней в октавных полосах шумомер подключают к фильтрам и анализаторам.

Для измерений используют отечественные шумомеры Ш-71, ПИ-14, ИШВ-1 в комплекте с октавными фильтрами. Широкое распространение в нашей стране получила акустическая аппаратура фирм RFT (Германия) и «Брюль и Къер» <Дания).

Шумоизмерительные средства состоят из шумомера (в соответствии с ГОСТ 17187-71) и октавных электрических фильтров, пропускающих определенную полосу частот электрических колебаний.

Действие шумомера основано на преобразовании микрофоном звуковых колебаний в электрические, которые после усиления и прохождения через октавные фильтры передаются измерительному прибору — стрелочному индикатору.

На практике применяются измерительные системы типа ИШВ-1 (со встроенными октавными фильтрами) завода «Виброприбор» (г. Таганрог) или ШВК-1 (с отдельными фильтрами типа ФЭ-2 того же завода) и типа 00017 (со встроенными фильтрами) фирмы RFT ГДР.

Для измерения только уровня звука без частотного анализа используют шумомеры типов «Шум-1, ШМ-1, Ш-63 или 00014 фирмы RFT (ГДР).

Для ультразвуковых шумов (частота более 11,2 кГц) нормируемые параметры установлены ГОСТ 12.1.001-75 «ССБТ. Ультразвук. Общие требования безопасности».

Вибрация измеряются приборами, основанными на механических и электрических методах. Электроизмерительные приборы обеспечивают более высокую точность измерения в широком диапазоне частот вибраций большой и малой интенсивности. Они позволяют записывать виброграммы на значительном расстоянии от объекта вибрации, что обеспечивает безопасность и удобство проведения работ по измерениям.

Измерение вибраций производится согласно ГОСТ 12.4.012-75 «ССБТ. Средства измерения и контроля вибраций на рабочих местах. Технические требования». Этим требованиям отвечает шумомер типа ШВК-1, снабженный датчиком вибраций.

Для стационарного оборудования точки измерения вибраций выбирают на рабочих местах. Датчик вибрации крепят к рабочей площадке или сиденью работающего. Локальные вибрации, передающиеся на pyки при работе с ручными машинами, измеряют по виброскорости в среднегеометрических октавных полосах от 8 до 1000 Гц. Датчик вибрации крепят в местах контакта рук с вибрирующими поверхностями. Ручные машины должны соответствовать

требованиям ГОСТ 17770-72 «Машины ручные. Допустимые уровни вибрации».

Источник

ПРИБОРЫ И МЕТОДЫ ИЗМЕРЕНИЯ ШУМА

Реверберационная камера.Для проведения различных акустичес­ких исследований и измерений служит реверберационная камера (РК), в которой звуковые колебания эффективно отражаются от всех ограждающих поверхностей. Звуковое давление по всему объ­ему камеры достигается примерно одинаковым при равновероят­ном приходе звукового сигнала со всех направлений. Внутреннюю поверхность камеры облицовывают хорошо отражающим звук ма­териалом, коэффициент поглощения которого выбирают мини­мальным. Для достижения диффузности звукового поля выбирают специальную форму внутренних поверхностей, создают на них неро­вности, развешивают на стенах РК отражающие элементы, прини­мают меры для изоляции РК от внешних шумов и вибраций.

Основными измерениями, проводимыми в РК, являются: изме­рение звукопоглощающих свойств материалов; градуировка и ис­следование свойств микрофонов, шумомеров и другой акустической аппаратуры; исследование и измерение различных источников шу­ма, звуковых полей устройств, приборов, машин и т. д.; измерение мощности излучения громкоговорителей; исследование субъектив­ных характеристик слуха; исследование и измерение звукоизолиру­ющих свойств различных материалов при наличии двух камер с общим сообщающимся окном и т. д.

Для измерения времени реверберации после выключения источ­ника шума (звука) записывают динамику уменьшения уровня звуко­вого давления. С этой целью применяют самописцы с логариф­мической шкалой. Время стандартной реверберации определяется по формуле (3.14).

Звукомерная камера.Данная камера предназначена для проведе­ния акустических измерений с имитацией неограниченного простра­нства. В отличие от реверберационной звукомерная камера (ЗК) имеет внутреннюю поверхность, покрытую совершенным звукопо­глощающим материалом с коэффициентом поглощения, близким к единице. При измерениях на высоких частотах вместо качествен­ного заглушения (отсутствие отражений от стенок) применяют им-‘ пульсный метод измерений. При этом основные измерения произ-. водятся в момент прохождения прямого сигнала (до прихода от­раженного сигнала). Такой метод позволяет избежать погрешно­стей, возникающих при отражении сигнала из-за несовершенства поглощающих стенок ЗК. Для достижения качества ЗК должна иметь кроме того хорошую звукоизоляцию и виброизоляцию.

Вместо звукомерных камер в гидроакустике часто применяют камеры в виде бассейнов, в которых трудно достигнуть значения коэффициента поглощения на всех поверхностях, равного единице. В гидрокамерах, в связи с этим, тоже с успехом применяется импульсный метод измерений.

Микрофон.Микрофоном называется приемник звука (шума), в котором происходит преобразование звукового колебания воз­душной среды в электрический сигнал. Микрофон характеризуется чувствительностью, частотной зависимостью, динамическим диапа­зоном, направленностью. Помимо электроакустического преобра­зователя в комплект микрофона входят предварительные усили­тели, согласующие трансформаторы.

Верхняя граница динамического диапазона определяется уров­нем звукового давления, при котором коэффициент гармонических искажений сигнала на выходе микрофона становится равным 0,5 — 1%.

Нижняя граница динамического диапазона определяется эквива­лентным уровнем звукового давления, при котором напряжение сигнала на выходе микрофона становится примерно равным напря­жению шума, обусловленного молекулярными шумами собственно преобразователя, предварительного усилителя, тепловыми шумами резистивных элементов и т. д.

Каждый микрофон имеет мембрану (диафрагму), которая колеб­лется под действием падающего звукового поля, в результате чего происходит акустико-механическое преобразование.

По направленности микрофоны делятся на три вида: приемники давления, приемники градиентного давления и комбинированные приемники.

В приемниках давления микрофон не обладает направленно­стью, так как падающее на подвижную механическую систему звуковое излучение действует с одной стороны. Учитывая, что размеры микрофона меньше длины волны звукового колебания и результирующая сила в рассматриваемом случае не зависит от направления прихода звука, устройство не обладает направленно­стью.

Подвижная система у градиентных приемников подвергается воздействию звукового поля с двух сторон. Результирующая сила F зависит от разности звуковых давлений р на обеих акустических входах и угла падения звуковой волны относительно акустической оси преобразователя:

(3.20)

где d — расстояние между входами приемника; в — угол падения звуковой волны относительно акустической оси электроакустичес­кого преобразователя.

Направленность градиентных приемников является функцией cosd. Максимальное значение выходного сигнала преобразователя будет в случае осевого падения (0=0,180°). Выходной сигнал преоб­разователя будет равен нулю при 0=90°.

При объединении приемников первых двух видов или определен­ной конструкции акусто-механической системы образуется комби­нированный приемник, с помощью которого можно получать диа­граммы направленности разных видов.

С точки зрения энергетических характеристик микрофоны делят­ся на две группы. К первой группе относятся микрофоны, имеющие источник питания, обеспечивающий энергию выходного сигнала. Ко второй группе относятся микрофоны, энергия выходного сиг­нала которых определяется процессом преобразования энергии па­дающей звуковой волны.

Примером микрофонов первой группы является угольный мик­рофон, у которого электрическое сопротивление угольного порошка зависит от давления мембраны, колеблющейся под действием пада­ющей звуковой волны. Достоинством угольных микрофонов явля­ется большая мощность выходного сигнала, остальные параметры невысокие: полоса частот от 100 Гц до нескольких десятков кГц; чувствительность 200 — 400 мВ/Па при токе питания 10 — 100 мА; динамический диапазон не более 30 дБ; коэффициент гармонических искажений до 20%.

Более высокими параметрами обладают микрофоны второй группы, которые в свою очередь делятся на электродинамические, электростатические и пьезоэлектрические.

Широкое применение в акустике нашли катушечные электроди­намические микрофоны, принципиальная конструкция которых представлена на рис. 3.13. Под действием падающей звуковой вол­ны происходит колебание мембраны 2, на которой закреплена сигнальная звуковая катушка 3 в кольцевом зазоре 1 постоянного магнита 5. При этом в катушке 3 возникает э.д.с. под действием изменения магнитного поля, пронизывающего эту катушку при колебании мембраны. Таким образом, энергия падающей звуковой волны преобразуется в электрический сигнал.

Микрофоны этого типа используются как приемники давления и комбинированные. Рабочий диапазон частот составляет от 20 Гц до 20 кГц при чувствительности 1 — 3 мВ/Па. Электродинамичес­кие катушечные микрофоны широко применяются в акустике из-за своей надежности, простоты конструкции и электроакустических параметров.

Ряс. 3.13. Принципиальная кон­струкция электродинамическо­го микрофона:

1 — кольцевой зазор; 2 — мемб­рана; 3 — звуковая сигнальная ка­тушка; 4 — гофрированный ворот­ник мембраны; 5 — постоянный магнит

Рис. 3.14. Принципиаль­ная схема конденсаторно­го микрофона электростатического типа

Высокими параметрами обладают конденсаторные микрофоны, принципиальная схема которых представлена на рис. 3.14.

Тонкая мембрана 1 является подвижной системой и одновремен­но обкладкой плоского конденсатора, вторая обкладка 2 которого выполнена в виде неподвижного массивного электрода с отверсти­ями. Эти отверстия обеспечивают необходимые диссипативные свойства воздушного зазора конденсатора. Под действием пада­ющей звуковой волны мембрана колеблется, изменяя при этом емкость С конденсатора. Разрядно — зарядный ток I, текущий по сопротивлению R, создает напряжение U, временная зависимость которого повторяет форму звукового сигнала. При наличии на обкладках конденсатора электретного материала необходимость в источнике питания Uo отпадает, так как электрет в зазоре создает требуемое электрическое поле. Конденсаторные микрофоны могут быть комбинированными, градиентными и приемниками давления.

Частотный диапазон конденсаторных микрофонов составляет от единиц Гц до 150 кГц и выше. Их чувствительность составляет примерно 10 мВ/Па при динамическом диапазоне 130 — 140 дБ.

Рис. 3.15. Блок-схемашумомера:

1 — микрофон; 2 — усилитель; 3 — корректирующие

фильтры; 4 — детектор; 5 — стрелочный индикатор

Шумомер. Для объективных измерений уровня громкости шума (звука) используется шумомер, блок-схема которого представлена на рис. 3.15. Частотная характеристика шумомера и некоторые его другие параметры подобраны в соответствии со спектральной чув­ствительностью человеческого уха. Учиты­вая особенности слухо­вого аппарата к вос­приятию звука разных частот и разной гром­кости (см. рис. 2.3), шумомеры снабжаются тремя комплектами фильтров, с помощью которых можно обеспечить требуемую форму частотной характери­стики на трех уровнях громкости.

Шкала «А» соответствует характеристике при малой громкости, примерно равной 40 фон (диапазон шкалы от 20 до 55 фон). Шкала «А» используется также при измерениях уровня громкости звука, выраженного в дБ с пометкой А (дБ«А», дБ(А) или дБА), при любых уровнях громкости.

Шкала «В» соответствует средней громкости 70 фон (диапазон от 55 до 85 фон).

Шкала «С» соответствует большой громкости (диапазон от 85 до 140 фон). Характеристика при большой громкости равномерна в диапазоне частот от 30 до 8000 Гц.

При нормировании громкости шума в производственных поме­щениях, на транспорте, в жилых домах шкала выходного прибора градуируется в дБ относительно стандартного звукового давления 2·10 -5 Па по одной из трех шкал.

Среди отечественных шумомеров можно отметить «Шум-1», ВШВ-0,3; спектрометры и полосовые фильтры — ИШВ-1, ИШВ-М, СИ-1, ШВК-И. Среди зарубежных шумомеров можно указать на шумомеры Германии (RFT-00014, 000024), Дании — фирмы «Брюль и Кьер» (Б и К) 2203, 2208 и т. д.

Методы измерения шумов. В зависимости от задач исследования или контрольных испытаний и измерений могут быть выбраны те или иные методы измерений. На территории жилой и общественной застроек измерения шума проводят в соответствии с ГОСТ 13337 — 78* (СТ СЭВ 2600 — 80).

При измерении в октавных полосах частот уровней звукового давления постоянного во времени шума можно не только сравни­вать шум с допустимыми нормами, но и разработать мероприятия по снижению уровня шумов: Для измерения уровня звука непосто­янного шума проводят регистрацию в течение наиболее шумного получаса. Импульсные шумы измеряют в положении «импульс» через короткие интервалы времени (примерно 5 с) с отсчетом мак­симального показания шумомера.

Очень часто для измерения непостоянного во времени шума применяют магнитофоны.

Для измерения инфразвука используются шумомеры от 2 Гц, соответствующие требованиям ГОСТ 17187 — 81 (СТ СЭВ 1351 — 78) «Шумомеры. Общие технические требования и методы испыта­ний» с использованием октавных фильтров по ГОСТ 17168 — 81 (СТ СЭВ 1807 — 79) «Фильтры электронные октавные и третьок-тавные. Общие технические требования и методы испытаний».

При измерениях постоянного во времени инфразвука использу­ется микрофон с предусилителем, шумомер и низкочастотный спек­тральный анализатор.

В случае измерения непостоянного во времени инфразвука используются те же приборы, но вместо анализатора спектра выбира­ют магнитофон с последующей расшифровкой, используя при этом интегрирующий шумомер или дозиметр шума.

Выбор локальных мест измерений осуществляется в соответст­вии с ГОСТ 13337 — 78*. «Шум. Методы измерения шума на селитебной территории и в помещениях жилых и общественных зданий». Если территория непосредственно прилегает к жилым домам, измерение приводят на расстоянии 0,3 м от ограждения с обеих сторон.

Для проведения самых различных акустических исследований необходимо иметь весь комплекс оборудования, частично рассмот­ренного выше: реверберационную и звукомерную камеру, шумоме-ры, микрофоны, анализаторы спектра, магнитофонную технику, радиотехническую аппаратуру, акустические фильтры и т. д.

Источник

Читайте также:  Как классифицируются приборы по принципу действия
Оцените статью
Электроника