К561тм2 схемы преобразователя напряжения

Микросхема к561тм2

Микросхема К561ТМ2 содержит два D-триггера, имеющих по два асинхронных установочных входа S и R соответственно для установки триггеров в состояние логической 1 и сброса информации. Микросхема К561ТМ2 изготавливается на основе КМОП-технологии и выпускается в пластмассовом корпусе.

Цоколевка к561тм2

Напряжение питания подается на вывод 14, общий провод подключается к выводу 7.

К561ТМ2 описание работы

Микросхема К561ТМ2 содержит два двухтактных D-триггера. Функциональная схема D-триггера может быть представлена в виде двух однотактных D-триггеров.

Двухтактный D-триггер работает следующим образом. По фронту первого импульса синхронизации на входе C, логический уровень присутствующий на входе D, записывается в первый однотактный D-триггер. По фронту второго импульса синхронизации, на выходе Q устанавливается уровень, присутствующий на входе D перед первым синхроимпульсом. Таким образом, на выходе двухтактного D-триггера сигнал задерживается на один такт.

Входы R и S не зависят от импульсов синхронизации и имеют активные высокие уровни. Поступление высокого уровня на входы R или S устанавливают оба однотактных D-триггера соответственно в «0» или «1» независимо от входов D и C.

К561ТМ2 параметры

Ток, потребляемый микросхемой от источника питания (Uп = 15 В) — 20 мкА;
Входные токи низкого и высокого уровней — не более 0,3 мкА;
Выходное напряжение низкого уровня (Uп = 10 В) — не более 1 В;
Выходное напряжение низкого уровня (Uп = 5 В) — не более 0,8 В;
Выходное напряжение высокого уровня (Uп = 10 В) — не менее 9 В;
Выходное напряжение высокого уровня (Uп = 5 В) — не менее 4,2 В;
Выходной ток низкого уровня (Uп = 10 В) — 0,9 мА;
Выходной ток низкого уровня (Uп = 5 В) — 0,5 мА;
Выходной ток высокого уровня (Uп = 10 В) — 0,6 мА;
Выходной ток высокого уровня (Uп = 5 В) — 0,25 мА;
Время задержки распространения сигнала при включении и выключении (Uп = 5 В) — не более 420 нс;
Время задержки распространения сигнала при включении и выключении (Uп = 10 В) — не более 150 нс;
Предельный диапазон напряжений питания — от 5 до 15 В;
Температура окружающей среды — от -45 до +85 ° C.

Читайте также:  Vemper частотный преобразователь настройка

Источник

Простой преобразователь напряжения 12В-220В для бритвы (К561ТМ2, КТ805)

Популярная электробритва «Эра» работает только на переменном токе, поэтому ею нельзя пользоваться в автомобиле. Устройство, описанное ниже, предназначено для питания этой электробритвы от автомобильной бортовой сети постоянным напряжением 12 В. Оно потребляет под нагрузкой ток около 2,5 А.

Принципиальная схема

Преобразователь содержит задающий генератор на частоту 100 Гц на триггере DD1.1, делитель частоты на 2 на триггере DD1.2, предварительный усилитель на транзисторах VТ1, VТ2 и усилитель мощности на транзисторах ?VТЗ, VТ4, нагруженный трансформатором Т1. Задающий генератор обладает весьма высокой стабильностью частоты (не хуже 5 % при изменении питающего напряжения от 0 до 15 В).

Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразователя. Микросхема DD1 и транзисторы предварительного усилителя питаются через фильтр R9C3C4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной частотой около 50 Гц.

Микросхема К561ТМ2 может быть заменена на 564ТМ2. Вместо транзистора КТ973Б (VТ1 и VТ2) можно использовать составной эмиттерный повторитель на транзисторах серий КТ361 и КТ502.

Транзисторы КТ805АМ можно заменить любыми мощными аналогичной структуры. Конденсаторы С1 и С2 — КМБП, С3 — КМ5, С4 — К50-6, С5 — МБГО на напряжение 400 В. Транзисторы VТ2, VТЗ следует разместить на теплоотводах с полезной площадью около 8 см каждый; при использовании металлических транзисторов радиатор не обязателен.

Трансформатор Т1 можно перемотать из любого сетевого трансформатора мощностью 30. 50 Вт (например, от телевизора «Юность», радиоприемников «АРЗ», «Рекорд») Все вторичные обмотки с трансформатора удаляют (сетевая будет служить обмоткой II), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 1,28 две полуобмотки, каждая с числом витков, соответствующим коэффициенту трансформации около 20 по отношению с оставленной обмотке на 220 В.

Собранный безошибочно из исправных деталей преобразователь не требует налаживания, за исключением подборки конденсатора С5 из условия получения максимального выходного напряжения при подключенной нагрузке.

С. Карлашук, В. Карлашук. г. Москва. Радио 1989, 11.

Источник

Простой преобразователь напряжения 12В-220В для бритвы (К561ТМ2, КТ805)

Популярная электробритва «Эра» работает только на переменном токе, поэтому ею нельзя пользоваться в автомобиле. Устройство, описанное ниже, предназначено для питания этой электробритвы от автомобильной бортовой сети постоянным напряжением 12 В. Оно потребляет под нагрузкой ток около 2,5 А.

Принципиальная схема

Преобразователь содержит задающий генератор на частоту 100 Гц на триггере DD1.1, делитель частоты на 2 на триггере DD1.2, предварительный усилитель на транзисторах VТ1, VТ2 и усилитель мощности на транзисторах ?VT3, VТ4, нагруженный трансформатором Т1. Задающий генератор обладает весьма высокой стабильностью частоты (не хуже 5 % при изменении питающего напряжения от 0 до 15 В).

Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразователя. Микросхема DD1 и транзисторы предварительного усилителя питаются через фильтр R9C3C4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной частотой около 50 Гц.

Микросхема К561ТМ2 может быть заменена на 564ТМ2. Вместо транзистора КТ973Б (VТ1 и VТ2) можно использовать составной эмиттерный повторитель на транзисторах серий КТ361 и КТ502.

Транзисторы КТ805АМ можно заменить любыми мощными аналогичной структуры. Конденсаторы С1 и С2 — КМБП, С3 — КМ5, С4 — К50-6, С5 — МБГО на напряжение 400 В. Транзисторы VТ2, VT3 следует разместить на теплоотводах с полезной площадью около 8 см каждый; при использовании металлических транзисторов радиатор не обязателен.

Трансформатор Т1 можно перемотать из любого сетевого трансформатора мощностью 30. 50 Вт (например, от телевизора «Юность», радиоприемников «АРЗ», «Рекорд») Все вторичные обмотки с трансформатора удаляют (сетевая будет служить обмоткой II), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 1,28 две полуобмотки, каждая с числом витков, соответствующим коэффициенту трансформации около 20 по отношению с оставленной обмотке на 220 В.

Собранный безошибочно из исправных деталей преобразователь не требует налаживания, за исключением подборки конденсатора С5 из условия получения максимального выходного напряжения при подключенной нагрузке.

С. Карлашук, В. Карлашук. г. Москва. Радио 1989, 11.

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

Собирал, хорошая штуковина. Приятно то, что никакой, т.е. в «тяжёлой» наладке нет надобности. Но будьте осторожны — дерётся током и серьёзно. Решил потрогать одновременно на нагрев транзисторы VT3 и VT4 — «двинуло» током равноценно «шо с резетки». Осторожней будьте!

1. — Можно ли применить вместо двухтактного RS триггера симметричный мультивибратор на маломощных дискретных транзисторах (например, КТ315Б) ввиду отсутствия микросхемы? — Точность частоты та же.
2. — Можно ли мотать первичную обмотку (на 12 В) в два провода?

Источник

Цифровые микросхемы — начинающим (занятие 6) — К561ТМ2 D-триггеры

На прошлом занятии мы познакомились с работой RS-триггера, построенного на двух логических элементах 2ИЛИ-НЕ. Работали с микросхемой К561ЛЕ5 (К176ЛЕ5), эта микросхема содержит четыре элемента 2ИЛИ- НЕ и на ней можно собрать два RS-триггера.

На прошлом занятии мы познакомились с работой RS-триггера, построенного на двух логических элементах 2ИЛИ-НЕ.

Работали с микросхемой К561ЛЕ5 (К176ЛЕ5), эта микросхема содержит четыре элемента 2ИЛИ- НЕ и на ней можно собрать два RS-триггера.

Вспомним как работает RS-триггер (рис. 1). У него имеются два входа и два выхода, входы обозначим R и S, а выходы Q (прямой) и Q (инверсный). Когда единичный импульс поступает на вход S триггер устанавливается в единичное состояние и на его выходе Q будет единица (на выходе Q будет ноль, поскольку выход инверсный). Такое состояние сохранится и если убрать единицу с входа S. И оно будет сохраняться до тех пор, пока на вход R не будет подан единичный импульс, тогда триггер «перекинется» в противоположное состояние, и на Q будет ноль, а на Q — единица. Таким образом RS-триггер может быть в двух устойчивых состояниях — единичном, когда на выходе Q единица, и нулевом, когда на Q ноль.

На схемах RS-триггер обозначается так, как показано внизу рисунка 1. Таким образом RS- триггер становится еще одной «элементарной частицей» цифровой схемы, «черным ящичком», имеющим строго определенные функции : подал единичный импульс на S и на Q будет единица, подал единичный_импульс на R и на Q теперь будет ноль (а на Q — все наоборот).

В сериях К176 и К561 есть только одна микросхема, содержащая RS-триггеры в «чистом виде» — это К561ТР2, причем только в серии К561 (К176ТР2 не бывает). Схема микросхемы К561ТР2 показана на рисунке 2.

Она содержит четыре RS-триггера, имеющих только по одному прямому выходу (Q), которые к тому же можно отключать от выходных выводов микросхемы при помощи внутреннего ключевого устройства. При подаче единицы на вывод 5 эти ключи замыкаются и уровни с выходов триггеров поступают на выходные выводы микросхемы, а если на вывод 5 подать нуль, то ключи разомкнутся и выходы триггеров отключатся от выходных выводов микросхемы (на этих выводах, в таком случае, будет «серый уровень»или «высокоимпендансное состояние», то есть они, практически, никуда не будут подключены). Корпус у этой микросхемы почти такой же как у К561ЛЕ5 или К561ЛА7, но у него на два вывода больше, то есть с каждого бока микросхемы не по семь выводов, а по восемь.

Кроме RS-триггеров существуют еще и D- триггеры, с которыми нам предстоит познакомиться на этом занятии.

Распространенная микросхема К561ТМ2 (или К176ТМ2) содержит два D-триггера (рисунок 3).

Микросхема имеет точно такой же корпус как у К561ЛЕ5, K561J1A7 (К176ЛЕ5, К176ЛА7). Как видно из рисунка отличие D-триггера от RS- триггера в том, что у него есть два новых входа — вход D и вход С.

Чтобы изучить работу D-триггера соберем схему, показанную на рисунке 4.

S1 — кнопка, S2 — микротумблер, но как и прежде, если нет кнопок, можно просто соединять два оголенных монтажных провода. Прибор Р1 — любой тестер или мультиметр, переключенный на измерение напряжения до 10-15В, когда он будет показывать напряжение, почти равное напряжению питания, — это единица, когда почти ноль — это ноль. Батарея питания составлена из двух «плоских батареек» по 4,5В каждая, так что в сумме они дают 9В (включены последовательно).

Входы S и R триггера соединим с общим минусом питания, как работает RS-триггер мы знаем, так что, пусть они нам не мешают.

В момент включения питания триггер окажется в одном из двух положений, либо ноль на выводе 1, либо на нем же единица. Если нужно установить его принудительно в какое-то положение это можно сделать выводами R и S как в RS-триггере, но нам это не нужно. Предположим на выходе нуль (низкие показания Р1). Если мы будем нажимать на S1 ничего не изменится. Но если сначала замкнуть S2 (на вход D подать единицу), а потом, удерживая S2 в замкнутом состоянии, нажать на S1 то триггер перекинется в единичное состояние, и на его выводе 1 будет единица (напряжение около напряжения питания). Теперь, удерживая S2 по-прежнему в нажатом состоянии, попробуем снова нажать на S1 — ничего не меняется. Триггер жестко держится в единичном состоянии. Попробуем разомкнуть S2 (теперь на вход D поступает ноль через R2). Снова нажмем на S1 — триггер вернется в нулевое состояние (нуль на выводе 1). Таким образом, при нажатии на S1 триггер устанавливается в такое положение, при котором логический уровень на его прямом выходе будет таким же как на входе D. После отпускания S1, триггер останется в установившемся положении, ему будет «все равно», что на входе D, если на входе С (кнопка S1) нуль. То есть, если на входе D будет единица, то в момент нажатия на S1 (подача единицы на вход С) состояние триггера станет единичным (единица на выводе 1), и останется таким и после отпускания S1 и изменения уровня на D. Но если на D подать нуль, и удерживая этот нуль, нажать на S1 (подать единицу на С), то триггер перейдет в нулевое положение.

Заметим, что уровни на выводах 1 и 2 противоположны, поскольку вывод 2 — инверсный выход (как будто-бы сигнал с вывода 2 подали на инвертор, и снимают с его выхода). Таким образом, когда триггер в единичном состоянии на выводе 2 будет ноль, а когда в нулевом, на этом выводе будет единица.

Если соединить вход D триггера с его инверсным выходом можно получить интересный эффект, — частота импульсов, поступающих на вход С будет делится триггером ровно на два, и на его выходе частота импульсов будет в два раза ниже чем частота импульсов поступающих на С.

Для изучения этого эффекта соберем схему, показанную на рисунке 5. Предположим в исходном положении триггер находится в нулевом состоянии, то есть на его выводе 1 — нуль. Поскольку на прямом выходе (вывод 1) нуль, то на инверсном выходе (вывод 2) все должно быть наоборот, и следовательно там единица. Эта единица поступает на вход D триггера. Теперь посмотрим, что произойдет если нажать и отпустить кнопку S1. В момент её нажатия на выходе (на прямом выходе) триггера установится именно такой уровень, как на входе D, то есть, если триггер в нулевом состоянии, и на D поступает единица с его инверсного выхода, то в момент нажатия на S1 триггер установится в единичное состоянии. И будет находится в таком состоянии и после отпускания S1. Но поскольку, триггер теперь уже находится в единичном состоянии, и на его выводе 1 (прямом выходе) единица, то на инверсном выходе (вывод 2), естественно, будет ноль. А значит ноль будет и на входе D. Нажав второй раз на S1 триггер перейдет снова в нулевое состояние.

Таким образом, на вход С мы подали два импульса (два раза нажимали на кнопку S1), а на выходе получился только один импульс (по пол-импульса на каждое нажатие). Если на вход С такого делителя частоты на два, подать импульсы с выхода, например мультивибратора, то частота этих импульсов на выходе триггера будет в два раза ниже чем на выходе мультивибратора.

На рисунке 6 показана диаграмма работы такого делителя частоты.

В исходном состоянии на выходе триггера (вывод 1) нуль, нуль также и на входе С (вывод 3). В момент нажатия на кнопку S1 на входе С (вывод 3.) уровень меняется с нулевого на единичный, тоже самое происходит и на выходе триггера (вывод 1). Затем мы отпускаем кнопку S1 и уровень на входе С (вывод 3) меняется на нулевой. Но несмотря на это на выходе по прежнему единица. Теперь снова нажимаем на S1 , — подаем единицу на вход С (вывод 3). В этот момент уровень на выходе меняется на нулевой, и остается таким и после отпускания кнопки.

При экспериментах с D-триггером возможны сбои в работе схемы по рисунку 5, потому что контакты кнопки имеют неприятную способность дребезжать, и этот дребезг дает вместо одного нажатия на кнопку несколько нажатий подряд. Простейшим способом подавить этот дребезг можно если параллельно R1 включить электролитический конденсатор на 5-15 мкФ (типа К50-35), плюсом к кнопке, а минусом к минусу питания. Но в цифровой технике применяется другой способ — используется RS-триггер и переключающая кнопка. Схема такого бездребезгового формирователя импульсов показана на рисунке 7 (используется второй триггер микросхемы К561ТМ2 или К176ТМ2).

Источник

Оцените статью
Электроника