Hw 637 обзор повышающий преобразователь

10 DC-DC преобразователей для DIY проектов и самоделок с Aliexpress

Платы-преобразователи напряжения широко распространены и позволяют с легкостью получить нужное напряжение на выходе. Они могут использоваться для создания небольших блоков питания, подключения светодиодных ламп и светильников, для питания различных устройств от бортовой сети автомобиля и прочего. Небольшие размеры и высокая эффективность модулей позволяют встраивать их в готовые корпуса приборов и аппаратов. Применение очень широкое, поэтому предлагаю ознакомиться с некоторыми из них.

USB преобразователь

Маломощный повышающий DC-DC преобразователь, преобразующий напряжение USB-порта 5В в 9 или 12 вольт. Ток нагрузки должен составлять не более 1А, а сам USB порт выдавать честные 2А без заметной просадки напряжения. Идеально подходят для питания роутеров или приставок. Есть вариант простого переходника с USB на DC Port.

Регулируемый USB преобразователь

Представляет собой некоторый аналог предыдущего преобразователя, но уже с другой элементной базой и регулируемым напряжением на выходе. Это универсальный понижающее-повышающий DC-DC преобразователь, напряжение на выходе от 1 до 24 вольт. При питании от USB 2А ток на выходе варьируется от 0,5А до 1А.

USB преобразователь с QC 2.0/3.0

Интересный DC-DC преобразователь с поддержкой протоколов быстрой зарядки QC 2.0/3.0. имеет компактные размеры и отлично подходит для постройки своего надежного адаптера для заряда смартфона или планшета. Многие ставят такие преобразователи в прикуриватель автомобиля. Диапазон рабочего напряжения 6-32В, выходная мощность до 32Вт. Без поддержки быстрой зарядки на выходе 5В/3.5А. Присутствует защита по току и от короткого замыкания.

Читайте также:  Блок преобразователь to int owen logic

Понижающий преобразователь XL4005

Дешевый и эффективный понижающий DC-DC преобразователь с рабочим током до 5А. КПД преобразователя высокое, отчего потери на нагрев минимальные, но все же без радиатора долговременно нагружать более 3А не стоит. Входное напряжение 4-38В, выходное 1,5-36В. Регулировка осуществляется многооборотистым переменным резистором.

Понижающий преобразователь XL4015

Дальнейшее развитие предыдущего преобразователя. В этом модуле добавили регулятор ограничения тока, что позволяет с легкостью использовать его для заряда литиевых аккумуляторов и сборок, а также в качестве драйвера светодиодов. Рабочие параметры практически аналогичные, на входе до 38В, на выходе до 36В. Рабочий ток 5А, но желательно приклеить радиатор или использовать обдув.

Мощный понижающий преобразователь XL4016

Мощный понижающий DC-DC преобразователь с широким диапазоном рабочего напряжения от 5В до 40В и током до 9А. Суммарная мощность преобразователя составляет около 300Вт. В максимальном режиме желательно использовать принудительный обдув компонентов. Применяется для постройки самодельных блоков питания или в качестве светодиодного драйвера.

Понижающий преобразователь Mini360

Один из лучших понижающих DC-DC преобразователей. КПД у него намного выше, чем у популярного LM2596, а компактные размеры позволяют встраивать его в различные приборы. На плате имеется подстроечный резистор при помощи которого регулируется напряжение на выходе. Ток на выходе до 3А, желательно не нагружать более 2А.

Повышающий модуль MT3608

Повышающий DC-DC преобразователь с рабочим напряжением от 5В до 24В. Поднятие напряжение осуществляется за счет тока, поэтому чем выше разница напряжений, тем выше ток на входе. Заявлен до 2А на выходе, но это предельный режим. Ток 1А при разнице в 5-10 вольт отлично работает. Применяют в переделках РУ-игрушек, модулей питания приборов и прочих устройствах.

Мощный повышающий преобразователь

Мощный понижающий DC-DC преобразователь с суммарной мощностью около 400Вт. Диапазон рабочего напряжения составляет от 9В до 50В, ток до 15А. Продавец явно указывает, что при токах более 8А необходимо использовать принудительный обдув компонентов. Применяется для постройки самодельных блоков питания, светодиодных драйверов, в качестве автомобильного источника питания ноутбуков и других приборов.

Автомобильный преобразователь

Автомобильный повышающий DC-DC преобразователь с напряжения 12В до 24В. На странице продавца можно выбрать модель на нужный ток, максимальный ток составляет 10А. Преобразователь выполнен в литом корпусе с алюминиевыми ребрами охлаждения и может работать даже во влажной среде.

Источник

ПОВЫШАЮЩИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ ОТ АМПЕРКИ

В конструировании устройств на основе аппаратной платформы Arduino часто требуется неодинаковые напряжения питания для разных частей устройства, в такой ситуации рационально использовать готовые DC-DC преобразователи. Известный отечественный производитель Arduino-совместимых устройств «Амперка», также предлагает подобное устройство. Данный преобразователь построен на м/с LM27313XMF (смотрите даташит).

Типовая схема LM27313

Конструктивно преобразователь представляет собой печатную плату размером 25 х 25 мм, масса устройства 5,4 г.

Испытания преобразователя

Согласно данным, предоставляемым продавцом, повышающий преобразователь может эксплуатироваться в диапазоне входных напряжений от 2,7 до 14 В, при этом выдавая на выходе напряжение от 5 до 28 В, заявленный КПД преобразования 80-90%, максимальны ток нагрузки составляет 0,8 А. Видимо в данные на сайте производителя вкралась ошибка, либо у автора какая-то другая версия устройства, по тому, что максимальное выходное напряжение в ходе экспериментальной проверки не превысило 15 В даже на холостом ходу. Напряжения регулируется при помощи подстроечного резистора. На плате имеется индикатор подачи питания на вход модуля.

В качестве нагрузки для тестирования модуля использован резистор ПЭВ-25 510 Ом. Источником тока является батарея из двух последовательно включенных гальванических элементов типоразмера АА.

Таблица 1 Испытания модуля с нагрузкой ПЭВ-25 510 Ом

Данные полученные при испытании устройства на холостом ходу приведены в таблице 2, видно, что при росте выходного напряжения от 3 до 15 В, ток потребляемый преобразователем возрос от 0,8 до 147 мА. Видно, что при большом значении выходного напряжения, ток холостого хода возрастает очень сильно.

Таблица 2 Испытания модуля MT3608 на холостом ходу

Подведение итогов

В целом данный модуль напоминает по своим характеристикам повышающий преобразователи SX1308 и MT3608. Как и все товары бренда «Амперка» с которыми имел дело автор, модуль сделан добротно: индикатор подачи питания, удобные клеммы для подключения. Все это конечно хорошо.

К недостаткам можно отнести очень высокий ток холостого хода, так. что если вам надо поднять напряжение с 3 В до 12 В ни о каком КПД в 80% нет и речи. Тот же индикатор питания в оправданный при макетной сборке, будет бесполезно освещать изнутри корпус готового устройства, в прочем это признает и сам производитель и предлагает удалять светодиод с платы при ее эксплуатации в устройствах с пониженным энергопотреблением. Поскольку в данном модуле изменение выходного напряжения осуществляется с помощью однооборотного резистора, то добиться точного значения выходного напряжения несколько сложнее, чем в аналогичных модулях с многооборотными подстроечными резисторами. Но самое главное, устройство стоит на порядок больше своих аналогов. Обзор подготовил Denev.

Форум по обсуждению материала ПОВЫШАЮЩИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ ОТ АМПЕРКИ

В каком направлении течет ток — от плюса к минусу или наоборот? Занимательная теория сути электричества.

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

Что такое OLED, MiniLED и MicroLED телевизоры — краткий обзор и сравнение технологий.

Про использование технологии беспроводного питания различных устройств.

Источник

DC-DC Step-Up повышающий преобразователь LM2587S 5.00 1

LM2587 Один из не многих Step-Up повышающих преобразователей, способный при определенных условиях поднять напряжение до 60В. На плате стабилизатора LM2587S есть подстроечный резистор, с помощью которого можно регулировать выходное напряжение. При помощи винтовых зажимов под отвертку, можно быстро и без лишних хлопот и паяльников, подключить к преобразователю входные и выходные провода. Благодаря высокому КПД, стабилизатор HW-637 почти не греется и не нуждается в радиаторе охлаждения. Для удобства крепления, на плате есть 4 отверстия под винт. Область применения: питание электронных устройств от аккумуляторов, батареек и сетевых адаптеров напряжения.

Характеристики LM2587:
Производитель микросхемы Texas Instruments
Наименование микросхемы LM2587S-ADJ
Минимальное напряжение входа 1.25В
Максимальное напряжение входа 40В
Минимальное напряжение выхода 4В
Максимальное напряжение выхода 60В
Максимальный выходной ток 5А
Номинальный ток выхода от 0 до 3000 мА
КПД 92%
Максимально допустимая температура +125°C
Частота ШИМ преобразователя 115 кГц
Размеры модуля: 37 x 32 x 15 мм

Для повышения напряжения на выходе, нужно вращать подстроечный резистор по часовой стрелке

DC-DC Step-Up повышающий преобразователь LM2587S отзывы

Средняя оценка покупателей: (1) 5.00 из 5 звезд

Источник

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Совсем недавно на глаза мне попался обзор линейных стабилизаторов напряжения на 3.3 Вольта.
Я даже принял участие в обсуждении, и как то там затронули тему питания устройств с 3.3 В питанием от литиевого аккумулятора.
А так как эта тема пересекалась с одним из моих будущих обзоров, то решил и я поэкспериментировать немного.

На самом деле эта тема тянется уже очень давно. По ТЗ мне надо питать устройство с напряжением питания 3.3 Вольта и током потребления около 0.5-0.7 Ампера. питать надо от литиевого аккумулятора.
Сначала хотел использовать линейный стабилизатор с ультра малым падением, но потом получил платку SEPIC конвертера и решил копать в этом направлении.
Первым делом хотел заказать микросхемы которые применены в готовом преобразователе, но мысль пошла дальше и привела к теме данного обзора и тому, что я в итоге сделал.

Так, стоп, что то я забежал далеко вперед, непорядок.

Заказано было две платы, вернее два лота.
В первом лоте было 5 плат, цена $1.94 за лот или 0.39 за штучку.

Пришли платы просто в конверте, пришли целыми, но не сказал бы что быстро, примерно за месяц.

Платки представляют из себя повышающий DC-DC преобразователь изначально настроенный на 5 Вольт.
Продаются просто линейками, если надо, то плату можно легко отломить как кусочек шоколадки.
Данный вариант разделения плат называется скрайбирование, в необходимых местах текстолит прорезается почти до нуля и когда надо — отламывается по этой линии.

Плата по сути примитивная (ну если не считать что в микросхеме куча элементов).
Когда выбирал что заказать, то рассудил так, в крайнем случае применю компоненты по отдельности, даже те же гнезда, они тоже денег стоят.
Пайка аккуратная, плата чистая.

Но разъем явно припаивали левой задней ногой, полная противоположность пайке с другой стороны, там скорее всего работал автомат.

По плате была составлена схема. К слову я немного сделал неправильно, срисовав схему после экспериментов, но об этом позже.

Так как плата изначально явно задумывалась для питания от аккумулятора, то для исключения влияния проводов я по входу поставил конденсатор 330мкФ 6.3В.
Скажу сразу, все платы запустились без проблем.

Небольшой тест платы. Так как платы изначально брались под переделку, то он скорее просто для общего представления.
Стартует плата при напряжении чуть больше 1 Вольта, выходное напряжение немного завышено.
Слева на всех фотографиях блок питания (левый индикатор — напряжение, правый — ток), справа нагрузка, там индикаторы подписаны.

Максимальный выходной ток, который я смог получить от платы при питании 3.6 Вольта составил 0.55 Ампера.
При перегрузке микросхема просто уходила в защиту, температура в тестах не поднималась выше 70 градусов.
Небольшая справка, для конвертеров сделанных по топологии Step-Up самый тяжелый режим не КЗ, а перегрузка. При КЗ ток ограничен сопротивлением дросселя и падением на диоде, микросхема при КЗ отключена. А вот если защита сделана неправильно, то при перегрузке микросхема либо умрет от перегрева либо от превышения максимального тока силового ключа.
Сколько я не экспериментировал, плата работала корректно и при перегрузке уходила в защиту снижая выходное напряжение.

Проверил я и то, что творился на выходе преобразователя.
На осциллограмме явно видно, что родной конденсатор не справляется с пульсациями, добавление по выходу емкости в 100мкФ сводит пульсации почти на нет.
Делитель щупа осциллографа во время всех тестов стоял в режиме 1:1.
Как по мне, то преобразователь в исходном виде вполне неплох.
продавец декларирует 200мА от 1.5 Вольта питания и 500мА от 3 Вольт питания.
В реальности если и будет меньше, то ненамного.

Второй лот состоял из одной платы. Отзывы были весьма разными и не всегда хорошими, но так как эта плата также бралась под эксперименты, то мне было все равно.
Цена платы 0.6 доллара, ссылка на товар.

Здесь продавец уже немного защитил плату, обмотав ее пупыркой, кроме того сама плата находилась в герметичном антистатическом пакетике.
Заказана была одновременно с предыдущим лотом, и что самое удивительное. пришла также одновременно, вернее в один день.

24 В
Максимальное выходное напряжение: 28 В
Максимальный выходной ток: 2А
КПД: более 93%.
Размеры 36 мм * 17 мм * 14 мм.

Снизу компоненты отсутствуют, название платы совпадает с названием микросхемы, которая на ней установлена, собственно так я на нее и вышел.

Плата маленькая, особенно если учесть, что довольно много места занимают контактные площадки. Если контактные площадки отрезать, то размер станет заметно меньше.

Схема также простейшая, основана на микросхеме MT3608, на которую есть даже даташит.
причем параметры микросхемы весьма неплохие, собственно я сначала нашел даташит, потом микросхему, потом плату на ее основе.

По плате также была начерчена схема, вывод 4 это вход управления микросхемой, для включения он должен быть соединен со входом питания.

А вот первое включение меня сильно удивило.
На первый взгляд на фото ничего необычного, включен БП, к выходу подключена электронная нагрузка и на индикаторе отображается ток нагрузки в 0.18 А.
Все нормально если бы не одно НО, регулятор тока нагрузки выкручен на минимум, а минимальный ток у нее 20мА.
Явно что то не так.

А «не так» оказалось в том, что плата на выходе имеет большие пульсации с высокой частотой (производитель декларирует частоту в 1.2 МГц).
После подключения параллельно выходу конденсатора емкостью в 100мкФ проблема нестабильной работы электронной нагрузки ушла.
Кроме того «помог» производитель, а вернее разработчик, разместив выходной конденсатор не около выходных клемм, а около микросхемы.
Стартует плата при 1.8 Вольта, установленное напряжение на выходе держит хорошо.

В отзывах к плате писали, что выходное напряжение не регулируется.
Видимо человек просто не разобрался, хотя тут и производитель виноват.
Дело в том, что регулировка происходит на 8 оборотах подстроечника из 30! Да еще и при вращении влево О_о
Т.е. из привычного максимального положения крутим 22 оборота, при которых ничего не происходит и только последние 8 оборотов напряжение будет регулироваться, жуть.

Эта микросхема также не перегревалась в работе, правда и не выдала мне 2 Ампера.
При этом измерение температур показало, что при токах более 1 Ампера на плате начинает греться дроссель и выходной диод, это надо также иметь в виду.
Но стоит сказать, что 2 Ампера на выходе можно получить только при определенных условиях, и это максимум.

Уже когда писал обзор, то понял что я подавал на входной электролит (как в первом случае 330мкФ 6.3 В) аж 10 Вольт, но так как конденсатор был качественный, то он отнесся к этому равнодушно.

А вот такие пульсации у платы без добавочного выходного конденсатора, неудивительно что нагрузка «сходила с ума».

Так, пора перейти собственно к тому, зачем мне все это понадобилось (в смысле платы).
У меня уже был обзор готовой платы, полностью самодельного варианта, теперь попробуем сделать вариант с модернизацией готового преобразователя.

Ход мысли у меня бы примерно такой:
Надо широкий диапазон питания, соответственно надо SEPIC
После этого я начал искать специализированные микросхемы, затем подумал, а зачем мне собственно что то специализированное, если суть SEPIC преобразователя это модернизированный Step-up преобразователь.
Этот момент кстати очень важен, переделать можно именно повышающий, Step-down переделать нельзя по двум причинам —
1. У Step-down преобразователей силовой ключ стоит в положительном полюсе питания
2. Силовой ключ в таких преобразователях вполне может находится в полностью открытом состоянии, или закрываться на очень короткое время, что для повышающего почти однозначная смерть.

Нашел подходящую микросхему повышающего преобразователя и начал искать ее на Али, но в итоге нашел платы с ней.
После этого я поставил перед собой задачу получить SEPIC преобразователь путем минимальной доработки существующих плат повышающих преобразователей.

Ниже показаны оба типа преобразователей и видно, что отличие у них только в том, что в универсалом варианте добавлен дроссель и конденсатор, ВСЁ!

Для начала я решил провести эксперимент над мелкими преобразователями. Я не зря заказал лот из 5 штук, дело было не только в экономии.
Дело в том, что топология универсального преобразователя подразумевает наличие двух одинаковых дросселей, а так как таких у меня дома не было, то я решил взять дроссель из такой же платы (плат то вообще пять).

Попутно я пересчитал делитель обратной связи, сначала выяснив напряжение компаратора микросхемы.
В простенькой программе сделал источник 5.1 В (такое напряжение платы имеют на выходе), задал номиналы существующего делителя и получил около 1.22 Вольта.
После этого изменил выходное напряжение и подобрал один из резисторов так, чтобы на микросхему попадали те же 1.22 Вольта.
Эта операция не имеет отношения собственно к SEPIC преобразователю, просто мне надо было 3.3 Вольта, но из тех номиналов что были дома я смог подобрать только под 3.2 Вольта.

А вот здесь и вылезло то, что я перерисовал схему уже после тестов.
Я хотел применить минимум дополнительных компонентов.
Дроссель был взят от одной из плат, резистор взял из запасов (хотя можно было и его взять из другой платы), конденсатор выпаял из старой платы монитора.
Вот как раз конденсатор лучше было взять от одной из плат преобразователя (откуда выпаивал дроссель), так как там конденсаторы имеют даже большую емкость и все равно не нужны.

Диод выпаивается, на его место паяется конденсатор.
Около микросхемы зачищается площадка, к ней паяется один вывод дросселя, второй паяется к площадке где раньше был катод диода.
К этой же площадке теперь паяется анод диода, а катод к правому выводу резистора 3.3к (через него питается светодиод).
Также надо обязательно перерезать дорожку, место видно на фото.

Пробуем.
Стартует от 1.28 Вольта

Хоть плата и работает, но стабильность выходного напряжения оставляет желать лучшего.
При маленьком токе нагрузки и входном напряжении в 4.2 Вольта выходное поднимается до 3.6 Вольта. Не то чтобы критично, но не очень хорошо.
При токе более 500мА срабатывает защита и выходное напряжение падает.

Погоням плату в разных режимах я пришел к выводу, что максимальный выходной ток в моем диапазоне будет около 300мА, но при этом кратковременно можно понимать до 400мА.

В процессе экспериментов я также пробовал увеличить емкость конденсатора между дросселями, но никакого заметного результата это не дало 🙁

А вот уровень пульсаций получился весьма неплохим, слева в режиме повышения, справа — понижения.

Наигравшись с мелкими платками я перешел к более крупному «подопытному».
Суть доработки здесь абсолютно такая же, за исключением того, что плата была одна. Заказывал я ее одну потому, что необходимый дроссель у меня уже был в наличии.
Также доработке был подвергнут и узел регулировки выходного напряжения, путем полной ликвидации и замены на пару резисторов.

Здесь я также провел операцию по измерению опорного напряжения компаратора, у меня получилось 680мВ.
Для этого я выставил на выходе 10 Вольт, а потом выпаял подстроечный резистор и измерил его сопротивление в режиме делителя, на левой схеме он представлен верхними двумя резисторами.
Потом пересчитал делитель под необходимое мне напряжение (ну почти, у меня ближайшее было 3.5 Вольта), а потом забил на это, полез в даташит и узнал что на самом деле не 680мВ, а 600 :)))
В общем я применил нижний резистор на 2к, а верхний на 9.1к.
Эксперименты, они такие эксперименты :))))

После всех расчетов приступил к переделке.
1. Выпаиваем подстроечный резистор и постоянный резистор на 2.2кОм (ну или грубо — выпаиваем все резисторы).
2. На место постоянного резистора впаиваем резистор на 2к, перерезаем дорожку между дросселем и диодом.
3. С обратной стороны платы припаиваем второй резистор делителя (его потом можно изменить). Я долго думал, куда мне припаять этот резистор, даже забыв, что можно припаять его снизу :))
4. Между дросселем и диодом впаиваем конденсатор. Здесь та же ошибка, конденсатор можно было взять с одной из плат.
К дросселю припаиваем обрезок вывода какого нибудь радиоэлемента, направляем его в сторону скоса на дросселе.
Зачищаем и залуживаем площадку около выходных площадок.

Припаиваем дроссель одним выводом на площадку около выходных клемм, вторым (проволочным) к диоду. Я не зря обратил внимание на скос на дросселе, так он лучше становится.
Всё.

В самом худшем режиме, при 2.6 Вольта на входе, плата сваливалась в защиту при токе около 700мА, в остальных режимах вела себя стабильно.
Вообще, в плане стабильности, плата стоит на голову выше предыдущих.

При входном напряжении в 10 Вольт я спокойно получил выходной ток более 2 Ампер, но диод и дроссели грелись уже прилично, микросхема при этом имела температуру не более 70 градусов.
На последнем фото видно что при малом входном напряжении и выходном токе в 700мА напряжение на выходе опускается до 3 Вольт.

Выше я написал, что при входном напряжении около 2.9 Вольта (нижнее рабочее напряжение литиевого аккумулятора) я получил 770мА при напряжении 3 Вольта.
Мне показалось что виной тому малая емкость конденсатора, который установлен между дросселями, ради эксперимента я установил параллельно ему второй с такой же емкостью (на схеме указана уже суммарная емкость).

После замены выходной ток явно вырос и напряжение падало до 3 (вернее 3.04) уже при токе 1.11 Ампера.
Т.е. получается что с одним конденсатором максимальная выходная мощность при напряжении 2.9 Вольта была 2.31 Ватта, а при двух конденсаторах уже около 3.3 Ватта.
Мне кажется что это прогресс.
Вообще такие конденсаторы довольно дорогие и я бы вообще советовал поставить на это место родной конденсатор на 28мкФ взяв его со входа этой платы. На его место достаточно поставить керамический 0.22 (или пару) и электролит на 100-220мкФ.

Еще несколько тестов при разных входных напряжениях и выходных токах.

Тесты показали, что при работе от одного литиевого аккумулятора (диапазон 3-4.2 В) и выходном напряжении 3.3 Вольта плата нормально может выдать до ток 700мА.

Но вот пульсации у этой платы явно выше, пожалуй это единственный ее минус. Это пульсации с электролитом на 100мкФ по выходу.
Я выше писал, что скорее всего это обусловлено неправильной трассировкой, керамический конденсатор по выходу может улучшить ситуацию, но не думаю что сильно.
Вообще SEPIC считается самым «шумным» типом преобразователя, потому отчасти это его особенность.

Самые большие пульсации наблюдались конечно же при максимальных токах нагрузки. А более правильно — при максимальном входном токе.

Фото обоих плат после переделки. На большой плате дроссель гармонично вписался на место подстроечного резистора, мелкая плата внешне выглядит более грубо.

А теперь сравнительное фото новых плат рядом с платой из этого обзора.
Видно что предыдущая плата кажется гигантом в сравнении с новыми.

Кстати я не сказал бы что большая плата из этого обзора сильно слабее. В прошом обзоре я тестировал преобразователь при входном напряжении в 14 Вольт, выходном 3.3 и токе 2.5 Ампера. Эта плата смогла выдать ненамного меньше.
Но цена.
Если предыдущий преобразователь стоил 5.7 доллара, то здесь, даже при худшем раскладе (покупка двух дорогих плат) вышла бы 1.2 доллара.
А если дома есть парный дроссель, то можно вообще уложиться в сумму около 0.8 доллара (плата + пара электролитов).

Суть данного обзора изначально стояла не в точном измерении характеристик, КПД и т.п. хотя я сделал достаточно разных измерений, а в том, чтобы получить универсальный преобразователь путем переделки дешевых повышающих.
Мне кажется что эксперимент удался, причем со второй платой я получил результат, сопоставимый с платой за 5.7 доллара, это более чем хороший результат.
А еще этот обзор может помочь в случае когда надо «здесь и сейчас», потому как плату повышающего преобразователя найти куда проще чем универсального (их вообще меньше в продаже, особенно в оффлайне).

Первая (мелкая) платка конечно слабовата, и напряжение у нее на выходе не так стабильно как у большой, но для ее переделки можно вообще ничего не покупать дополнительно, а сделать универсальный з двух повышающих.
При этом у нас останется запасная микросхема, диод, светодиод, разъем и несколько резисторов.
Вторая (большая) плата выходит несколько дороже и к ней надо либо дроссель, либо вторую такую же плату (это предпочтительнее).

Пару слов о платах в исходном виде.
Мелкие — Вполне себе рабочие платы, дешевые, не сильно мощные, при установке хотя бы небольшого электролита по выходу имеют низкие пульсации.
Заявленные 200мА (1.5В) и 500мА(3В) скорее всего не вытянут, но будут близки к этому.
Нагрев и надежность хорошая, я много раз перегружал плату, но она упорно уходила в защиту (защита не триггерная).

Большая — Ну тут отдельный случай. Реальный пример, как кривая проектировка может свести на нет хорошие характеристики установленных компонентов.
Да, компоненты на плате установлены нормальные, микруха вообще мне очень понравилась (надо будет купить с десяток в запас). Но тут и неправильная трассировка, и подстроченик включенный через одно место, и отсутствие электролитов по входу и выходу (при таких токах они уже не лишние).
Т.е. сама плата в том виде как есть мне не понравилась, но несложными усилиями от нее можно получить хороший результат. А еще лучше результат после переделки ее в универсальный преобразователь 🙂

На этом пожалуй вроде все, платы работают, профит получен, отчет написан, жду вопросов в комментариях 🙂

5 в , 600 ма, схема , переделка mt3608 в понижающий , схема кит модуля hw668 step up , доработка mt3608 в прибор ma830 , переделка w1308 схема подключения , 3608 1308 или 6009 , mt3608 повышающий dc-dc преобразователь схема включения , мт3608 или xl3006 , sdb628 выключение , фонарик на zxsc400 , mt6288 datasheet , схема повышающего преобразователя на b628 , b6287k микросхема замена в какой схеме применяется схема подключения , повышающий dc dc преобразователь на sx1308 для светодиода , плата mt3608 доработка , step up модуль 1 5 в до 5 в 500ma на другое напряжение , увеличить напряжение на выходе мт3608 , b6288a аналог , доработка модуля xl6009 , cn= dc dc на русском , мощный dc dc step up купить , доработка повышающего преобразователя мт 3608 , sx1308 схема преобразователя

Источник

Оцените статью
Электроника