График зависимости импульса фотона от длины волны излучения

График зависимости импульса фотона от длины волны излучения

При освещении металлической пластины светом наблюдается фотоэффект. Длину волны света плавно изменяют. Установите соответствие между графиками и физическими величинами, зависимости которых от длины волны падающего света эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

1) работа выхода фотоэлектрона из металла

2) импульс падающего на металл фотона

4) максимальная кинетическая энергия фотоэлектронов

Работа выхода фотоэлектрона характеризует свойства материала металлической пластины и не зависит от длины волны падающего на нее света, поэтому график этой величины должен представлять собой горизонтальную линию. Тоже самое и для силы фототока: она определяется интенсивностью света, а не его длиной волны. Разберемся с оставшимися вариантами ответа.

Импульс фотона обратно пропорционален длине волны: На графике А изображена именно такая зависимость физической величины от длины волны, поэтому этот график соответствует импульсу падающего на металл фотона (А — 2).

Согласно уравнению Эйнштейна для фотоэффекта, энергия фотона идет на работу выхода и на сообщение электрону кинетической энергии: Поэтому максимальная кинетическая энергия фотоэлектрона зависит от длины волны следующим образом: Если длина волны фотона больше длины волны соответствующей красной границе, фотоэффект не наблюдается. Поэтому от графика функции нужно взять только часть, где На графике Б изображена именно такая ситуация, поэтому график Б соответствует максимальной кинетической энергии фотоэлектронов (Б — 4).

Источник

График зависимости импульса фотона от длины волны излучения

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графиках в первом столбце представлены зависимости энергии от длины волны и частоты света Установите соответствие между графиком и той энергией, для которой он может определять представленную зависимость.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

1) зависимость максимальной кинетической энергии фотоэлектронов от частоты падающего света

2) зависимость энергии падающих фотонов от частоты падающего света

3) зависимость энергии падающих фотонов от длины волны света

4) зависимость потенциальной энергии взаимодействия фотоэлектронов с ионами металла от длины волны падающего света

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Рассмотрим указанные виды зависимостей.

1) Зависимость максимальной кинетической энергии фотоэлектронов от частоты падающего света:

График — ломанная линия. (Б — 1)

2) Зависимость энергии падающих фотонов от частоты падающего света:

График — прямая линия, выходящая из начала координат.

3) Зависимость энергии падающих фотонов от длины волны света:

4) Потенциальная энергия взаимодействия фотоэлектронов с ионами металла не зависит от длины волны падающего света.

Источник

Фотон

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Корпускулярно-волновой дуализм

Вопрос, на который вам однозначно не ответит никто: «Свет — это частица или волна?». Это очень сложный вопрос, на который ученые давно пытаются ответить.

В XVII веке Исаак Ньютон предложил модель, в которой свет — поток мельчайших корпускул (частиц). Это позволяло просто объяснить многие характерные свойства света. Например, прямолинейность световых лучей и закон отражения, согласно которому угол отражения света равен углу падения. Это соотносится с законом сохранения импульса, которому подчиняются частицы.

Но есть такие явления, как интерференция и дифракция. Они совсем не вписываются в корпускулярную теорию.

Осторожно: дальше много сложных терминов! Но на элективном курсе по физике за 10 класс можно разобраться даже в сложном материале вместе с опытным преподавателем.

Интерференция и дифракция

Интерференция — это явление, при котором происходит наложение двух волн и образуются так называемые «максимумы» и «минимумы» — самые светлые и самые темные участки. Выглядит это так:

В жизни вы это встречали, например, если видели разлитый бензин или пускали мыльные пузыри. Это все следствие интерференции света.

Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн.

Дифракция — это явление огибания препятствий, которые возникают перед волной. Благодаря дифракции свет может огибать препятствие и попадать туда, где с точки зрения геометрии должна быть тень.

В XIX веке появилась волновая теория света, которая объясняла дифракцию и интерференцию. Согласно этой теории, свет — частный случай электромагнитных волн, то есть процесса распространения электромагнитного поля в пространстве.

Волновая оптика вообще казалась в то время каким-то чудом, потому что она объясняла не только те явления, которые не объясняла корпускулярная теория, но и вообще все известные на то время световые эффекты. Даже законы геометрической оптики можно было доказать через волновую оптику.

Казалось бы, ну все тогда — у света волновая природа, никаких тебе частиц, расходимся. Но не тут-то было! Уже в начале XX века корпускулярная теория света снова набрала актуальность, так как ученые обнаружили явления, которые с помощью волновой теории объяснить не удавалось. Например, давление света и фотоэффект, о которых мы еще поговорим.

В рамках корпускулярной теории эти явления прекрасно объяснялись, и корпускулы (частицы) света даже получили название — фотоны.

Сложилась интересная ситуация — параллельно существовали две серьезные научные теории, каждая из которых объясняла одни свойства света, но не могла объяснить другие. Вместе же эти две теории идеально дополняют друг друга. Так мы подошли к понятию корпускулярно-волновой природы света.

Корпускулярно-волновой дуализм — это физический принцип, утверждающий, что любой объект природы может вести себя и как частица, и как волна.

Энергия и импульс фотона

Каждый фотон переносит некоторое количество энергии. Именно это количество называется энергией фотона.

Энергия фотона (соотношение Планка-Эйнштейна)

E — энергия фотона [Дж]

h — постоянная Планка

ν — частота фотона [Гц]

Импульс фотона связан с энергией следующим соотношением:

Соотношение импульса и энергии фотона

p — импульс фотона [(кг*м)/с]

E — энергия фотона [Дж]

с — скорость света [м/с]

Подставляем вместо E формулу энергии фотона: p = hv/c

А вместо частоты формулу v = с/λ: p = hc/cλ

Сокращаем скорость света и получаем формулу импульса.

Импульс фотона

p — импульс фотона [(кг*м)/с]

h — постоянная Планка

λ — длина волны [м]

Давление света

Сила Лоренца — это сила, действующая на частицу, движущуюся в магнитном поле.

Если рассматривать свет как совокупность фотонов, то можно предположить, что свет, как и любая другая электромагнитная волна, может оказывать давление. Именно такое предположение сделал Джеймс Максвелл в 1873 году и не прогадал.

Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов. Каждый фотон обладает импульсом p = hv/c.

Полный импульс, получаемый поверхностью тела, равен p = hv/c * N.

Из механики известно, что давление — это отношение силы к площади, на которую эта сила воздействует: p = F/S.

Не перепутайте: импульс и давление обозначаются одинаковой буквой, но величины разные!

Второй закон Ньютона в импульсной форме имеет вид F = p * Δt, где p — это импульс, а Δt — промежуток времени, за которое импульс меняется на значение p.

Тогда световое давление определяется так: p = F/S = (p * Δt)/S = hvN/Sc.

При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (в этом случае удар неупругий, так как черный цвет поглощает фотон).

Предсказанное Максвеллом существование светового давления было экспериментально подтверждено физиком П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали. Значение давления света составило ≈ 4.10 -6 Па.

Опыты Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом.

Фотоэффект

Еще одно важное явление, подтверждающее корпускулярную природу света, — это фотоэффект. Пока разберем только принцип этого явления, а сложную математику оставим на другой раз. 😉

На рисунке представлена экспериментальная установка для исследования фотоэффекта.

Установка представляет собой стеклянный вакуумный баллон с двумя металлическими электродами, к которым прикладывается напряжение. Один из электродов через кварцевое окошко освещается монохроматическим светом (монохроматический свет — это свет, длина волны которого неизменна). Под действием фотонов из отрицательно заряженного электрода выбиваются так называемые фотоэлектроны. Они притягиваются к положительному электроду и образуется фототок.

Многочисленные экспериментаторы установили основные закономерности фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  2. Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.
  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Эйнштейн исследовал фотоэффект и пришел к выводу, что свет имеет прерывистую структуру, то есть состоит из фотонов.

Фотоэффект используется, например, в датчиках света. Уличные фонари, оборудованные датчиками света, включаются автоматически при определенном уровне естественного освещения.

Техническое применение фотонов

Важное техническое устройство, использующее фотоны — лазер. Лазеры применяют во многих областях технологии: с их помощью режут, варят и плавят металлы, получают сверхчистые металлы. На лазерах основаны многие точные физические приборы — например, сейсмографы. Ну а с лазерными принтерами и указками вы наверняка знакомы.

На определении местоположения фотонов основаны многие генераторы случайных чисел. Чтобы сгенерировать один бит случайной последовательности, фотон направляется на лучеделитель — штуку, которая разделяет свет на два потока.

Для любого фотона существует лишь две возможности, причем с одинаковой вероятностью: пройти лучеделитель или отразиться от его грани. В зависимости от того, прошел фотон через лучеделитель или нет, следующим битом в последовательность записывается 0 или 1.

Источник

Фотоны

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.

Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.

Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.

Энергия фотона

Выражение для энергии фотона с частотой мы уже знаем:

Часто бывает удобно работать не с обычной частотой , а с циклической частотой .

Тогда вводят другую постоянную Планка «аш с чертой»:

Выражение (1) для энергии фотона примет вид:

Фотон движется в вакууме со скоростью света и потому является релятивистской частицей: описывая фотон, мы должны привлекать формулы теории относительности. А там имеется такая формула для энергии тела массы , движущегося со скоростью :

Если предположить, что , то формула (2) приводит к бессмысленному заключению: энергия фотона должна быть бесконечной. Чтобы избежать этого противоречия, остаётся признать, что масса фотона равна нулю. Формула (2) позволяет сделать и более общий вывод: только безмассовая частица может двигаться со скоростью света.

Импульс фотона

Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:

Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:

Отсюда для импульса фотона получаем:

Направление импульса фотона совпадает с направлением светового луча.

Учитывая, что отношение есть длина волны , формулу (4) можно переписать так:

В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.

Давление света

Свет оказывает давление на освещаемую поверхность. Такой вывод был сделан Максвеллом из теоретических соображений и получил экспериментальное подтверждение в знаменитых опытах П.Н. Лебедева. Если понимать
свет как поток фотонов, обладающих импульсом , то можно легко объяснить давление света и вывести формулу Максвелла.

Предположим, что на некоторое тело падает свет частоты . Лучи направлены перпендикулярно поверхности тела; площадь освещаемой поверхности равна (рис. 1 ).

Пусть — концентрация фотонов падающего света, то есть число фотонов в единице объёма.

За время на нашу поверхность попадают фотоны, находящиеся внутри цилиндра высотой .

При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть — коэффициент отражения света; величина показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина — это доля падающей энергии, поглощаемая телом.

Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа ) отразится от поверхности, а какое — поглотится ею:

Импульс каждого падающего фотона равен . Поглощённый фотон испытывает неупругое столкновение с телом и передаёт ему импульс . Отражённый фотон после упругого столкновения меняет направление своего импульса на противоположное, и поэтому импульс, переданный телу отражённым фотоном, равен .

Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.

Суммарный импульс, полученный телом от падающих фотонов, равен:

На нашу поверхность действует сила , равная импульсу, полученному телом в единицу времени:

Давление света есть отношение этой силы к площади освещаемой поверхности:

Выражение имеет простой физический смысл: будучи произведением энергии фотона на число фотонов в единице объёма, оно равно энергии света в единице объёма, то есть объёмной плотности энергии . Тогда соотношение (6) приобретает вид:

Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.

Двойственная природа света

В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.

1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.

Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.

2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.

Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.

Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.

Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.

Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.

О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.

Источник

Читайте также:  Отличие экологического фактора от ресурса среды солнечное излучение
Оцените статью
Электроника
ГРАФИКИ ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ