Частотный преобразователь элхарт настройки

Содержание
  1. Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей
  2. 1. Способы подачи сигналов управления на частотный преобразователь
  3. 2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией
  4. Режим 1
  5. Режим 2
  6. 3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации
  7. Режим 1
  8. Режим 2
  9. 4. Задание частоты
  10. Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)
  11. Задание частоты командами «Больше/Меньше»
  12. 5. Устранение типовых неполадок в работе частотного преобразователя
  13. Применение ПЧ ELHART EMD-MINI в системах поддержания давления
  14. 1. Введение
  15. 2. Классическое регулирование
  16. 3. Регулирование оборотов
  17. 4. Реализация системы управления на ПЧ
  18. 4.1 Способ включения
  19. 4.2 Тип обратной связи
  20. 4.3 Способ задания уставки
  21. 4.4 ПИД-регулятор
  22. 4.5 Спящий режим
  23. 4.6 Тип используемого датчика
  24. 4.7 Отслеживание обрыва датчика
  25. 4.8 Масштабирование сигнала ОС
  26. 4.9 Способ вывода измерений
  27. 4.10 Аварийная сигнализация
  28. 5. Применение дополнительного оборудования
  29. 5.1 Датчик давления
  30. 5.2 Монтаж датчика давления
  31. 5.3 Диагностика работы насоса
  32. 5.4 Защита от сухого хода насоса
  33. 5.5 Применение обратного клапана
  34. 5.6 Монтаж запорной арматуры
  35. 6. Вывод

Реализация управления пуском, остановом, реверсом и скоростью вращения ПЧ Elhart EMD-Mini с внешних кнопок / переключателей

1. Способы подачи сигналов управления на частотный преобразователь

Преобразователь частоты ELHART EMD-Mini имеет встроенную несъемную панель управления. С этой панели доступен весь функционал частотника (настройки, управление). По умолчанию частотный преобразователь настроен на управление двигателем со встроенной панели (кнопка RUN/STOP, встроенный потенциометр). Потенциометр настроен на регулировку частоты от 0 до 50 Гц (максимальной частоты).

Рисунок 1 — Преобразователи частоты ELHART EMD-MINI

Управление частотным инвертором со встроенной панели имеет свои недостатки:

  • Так как преобразователь предназначен для установки в шкаф управления, то для доступа к встроенной панели необходимо каждый раз открывать дверь шкафа (в случае работы в пыльном производстве — мука, пыль, цемент — частое открытие двери недопустимо). Кроме того, часто частотник устанавливается рядом с двигателем, а пульт оператора находится в стороне.
Читайте также:  Частотный преобразователь eds op le01 инструкция

ПЧ ELHART позволяет настроить подачу команд управления со встроенной панели, интерфейса RS-485, а так же на программируемых дискретных входах, в этом материале речь пойдет именно о них.

Указания по монтажу сигналов управления к частотному преобразователю:

  • Управляющий кабель должен быть размещен отдельно от кабелей силовой части.
  • Применяйте для подключения к дискретным входам только высококачественные коммутационные элементы, исключающие дребезг контактов.
  • Для предотвращения помех используйте экранированные провода с сечением 0,75 мм².
  • Не подавайте внешнее напряжение на клеммы управляющих сигналов.
  • Максимальная длина управляющих цепей 30 м.

В частотном инверторе EMD-MINI есть 4 программируемых дискретных входа FWD, REV, S1 и S2. Принципиальных отличий между входами нет, так как функции настроек для всех входов даны одинаковы. Для управления с дискретных входов необходимо использовать переключатели типа «сухой контакт» (кнопка, концевик, релейный выход). Если источник управления встроенная панель — пуск, останов, смена направления движения с дискретных входов невозможна. Если источник управления дискретные входы, пуск со встроенной панели невозможен.
Кнопку «Стоп» на панели частотника можно заблокировать (Р103=0 — кнопка заблокирована, Р103=1 — кнопка активна). По умолчанию кнопка активна. Возможно подключение кнопок управления по двухпроводной и трехпроводной схеме.

2. Двухпроводная схема подключения ЧП с использованием контактов с фиксацией

Режим 1

Таблица 1 — Работа ПЧ в режиме 1 (контакты с фиксацией)
Состояние входных сигналов Режим работы
К1 К2
Вкл Выкл Вращение в прямом направлении
Выкл Вкл Вращение в обратном направлении
Выкл Выкл Стоп
Вкл Вкл Стоп
  • Р102=1 — Источник команд управления = программируемые дискретные входы;
  • Р315=6 — Вход FWD = вращение в прямом направлении;
  • Р316=7 — Вход REV = вращение в обратном направлении.

В схеме можно применить переключатель «Джойстик» EMAS CP101DJ20 на 2 направления с фиксацией. (2НО). Среднее положение — стоп, или переключатель с фиксацией II-0-I EMAS B101S30

Режим 2

Таблица 2 — Работа ПЧ в режиме 2 (контакты с фиксацией)
Состояние входных сигналов Режим работы
К1 К2
Вкл Выкл Вращение в прямом направлении
Вкл Вкл Вращение в обратном направлении
Выкл Выкл Стоп
Выкл Вкл Стоп
  • Р102=1 — Источник команд управления = программируемые дискретные входы;
  • Р315=6 — Вход FWD = вращение в прямом направлении;
  • Р316=4 — Вход REV = изменение направления вращения.

В этой схеме пока замкнут контакт К1 двигатель вращается. Если К2 разомкнут — вращение происходит в прямом направлении, если К2 замкнут — в обратном. В схеме можно применить 2 переключателя с фиксацией 0-I, например, переключатель B100S20, B100C, или тумблер МА111.

3. Трехпроводная схема подключения ЧП с использованием контактов без фиксации

Режим 1

  • Р102=1 — Источник команд управления = программируемые дискретные входы;
  • Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
  • Р317=6 — Вход S1 = вращение в прямом направлении;
  • Р318=7 — Вход S2 = вращение в обратном направлении.

В схеме могут быть применены 2 кнопки без фиксации B100DH для запуска вращения и кнопка красная с НЗ контактом, например, кнопка B200DK для остановки.

Также для запуска можно применить переключатель без фиксации II-0-I B101S32 или переключатель «Джойстик» CP101DJ21 на 2 направления без фиксации. Переключение влево — вращение в одну сторону, вправо — в другую.

Режим 2

  • Р102=1 — Источник команд управления = программируемые дискретные входы;
  • Р315=8 — Вход FWD = сигнал «Стоп» (контакт НЗ);
  • Р317=5 — Вход S1 = команда «Пуск» (НО);
  • Р318=4 — Вход S2 = изменение направления вращения (кнопка НО с фиксацией).

В схеме может быть применена сдвоенная кнопка пуск/стоп EMAS B102K20KY. Где НЗ
контакт К3 — «Стоп», НО контакт К1 — «Пуск», НО контакт К2 — «Реверс» (переключатель с фиксацией, например, B100S20).

Контакт К2 не запускает двигатель, а лишь меняет направление вращения (в замкнутом состоянии). Параметр Р104 позволяет запретить реверс (по умолчанию разрешен).

Преобразователь частоты имеет возможность производить автостарт после подачи питания. Для этого необходимо в параметре Р416 установить 1 (автостарт разрешен). Также необходимо обеспечить постоянную подачу сигнала «ПУСК». Установить P102=1, то есть источником сигнала «ПУСК» будет дискретный вход и использовать кнопку с фиксацией для подачи сигнала на дискретный вход. Дискретный вход, на который будет подан сигнал «ПУСК», должен иметь функцию «5» либо «6» (см. P315-P318). Для автоматического запуска частотный преобразователь должен быть полностью выключен (при кратковременном пропадании питания ПЧ выдаст ошибку «Lu3» и не запустится).

Преобразователь частоты имеет возможность защиты от изменения параметров неквалифицированным персоналом. Если P118 =1, то все параметры заблокированы, параметры не могут быть изменены за исключением P100 (предустановленная выходная частота).

4. Задание частоты

Задание частоты возможно со встроенного потенциометра, внешними кнопками (больше/меньше), внешним потенциометром, сигналами 0-10 В, 4-20 мА, кнопками (больше/меньше) со встроенной панели, через интерфейс RS-485. Для использования внешнего потенциометра необходимо в качестве источника задания выходной частоты выбрать аналоговый сигнал 0..10 В (Р101=1). Внешний потенциометр для частотных преобразователей используется номиналом 5 либо 10 кОм. Рекомендуется использовать потенциометр EMAS BPR05K или BPR10K.

Рисунок 4 — Задание частоты сигналом 0. 10 В внешним потенциометром

Подключая внешний потенциометр мы подаем на аналоговый вход сигнал от 0 до 10 В (потенциометр выступает в роли делителя напряжения). Если используется не весь диапазон частот (от 0 до Fmax), то можно настроить частоту при минимальном и максимальном сигнале потенциометра. Пример настройки на управление частотой в диапазоне 20-45 Гц (см. рис. 5).

Рисунок 5 — График задания частоты

  • Р310=20 (частота при минимальном сигнале);
  • Р312=45 (частота при максимальном сигнале).

Также можно настроить на работу с прямым и обратным вращением двигателя. Пример настройки вращения от 25 Гц в одном направлении до 40 Гц в другом. При положении ручки потенциометра 0% двигатель вращается в обратном направлении на частоте 25 Гц. Пропорционально вращению ручки потенциометра двигатель замедляется, останавливается и начинает вращаться в прямом направлении. При положении ручки 100% достигается частота 40 Гц с вращением в прямом направлении (см. рис. 6).

Рисунок 6 — График задания частоты

  • Р310=25 (частота при минимальном сигнале);
  • Р311=1 (направление вращения при минимальном сигнале = обратное);
  • Р312=40 (частота при максимальном сигнале);
  • Р314=1 (при аналоговом сигнале реверс разрешен).

Задание частоты встроенными кнопками «Вверх/Вниз» (предустановленная выходная частота)

Фиксированная частота используется в качестве задания выходной частоты, когда параметр P101=0. Во время работы ПЧ выходную частоту можно изменять кнопками «Вверх/Вниз» (расположенными на встроенной панели управления). После отключения питания значение частоты вернётся на значение в параметре P100, если P812=1. После отключения питания значение частоты заданной кнопками «Вверх/Вниз» сохраняется, если P812=0 (задано по умолчанию).

Задание частоты командами «Больше/Меньше»

Выходная частота задаётся сигналами «Вверх/Вниз», подключенными к программируемым дискретным входам (см. рис 7).

Рисунок 7 — Задание частоты через дискретные входы (команды «Больше/Меньше»)

Для конфигурации входов, необходимо изменить параметры:

  • Р101=4 — источник задания выходной частоты = внешние кнопки «Вверх/Вниз»;
  • P317=15 — вход S1 запрограммирован на сигнал «Вверх», то есть увеличение заданной частоты;
  • P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты.

При замыкании контакта «Вверх» происходит увеличение заданной частоты, при замыкании контакта «Вниз» происходит уменьшение заданной частоты. Для сохранения заданной частоты после отключения питания необходимо установить соответствующий параметр P812=0 (установлен по умолчанию) (см. рис. 8).

Рисунок 8 — Задание частоты командами «Больше/Меньше»

Выносной пульт EMD-Mini RCP имеет абсолютно те же функции и возможности, что и панель управления на самом частотнике.

При подключении пульта EMD-Mini RCP показания на встроенной панели и внешнем пульте дублируются (отображаются синхронно). При этом кнопки и потенциометр на встроенной панели не активны. Управление и настройки происходят только с внешнего пульта.

Пульт ELHART EMD-Mini P318=16 — вход S2 запрограммирован на сигнал «Вниз», то есть уменьшение заданной частоты

Сводная таблица — сравнения способов управления преобразователем частоты
Способ управления Преимущества Недостатки
Со встроенной панели
  • не требует затрат
  • полный функционал
  • индикация параметров
  • для доступа необходимо открывать шкаф (где установлен частотный преобразователь)
  • нет защиты от неквалифицированного персонала (по умолчанию)
С пульта EMD-Mini RCP
  • полный функционал
  • индикация параметров
  • дистанционное управление
  • ограничение длины 2 м
  • нет защиты от неквалифицированного персонала (по умолчанию)
С внешних кнопок/переключателей, потенциометра
  • расстояние от преобразователя до пульта управления до 30 м
  • защита от неквалифицированно персонала
  • ограниченный функционал
  • нет индикации параметров (частоты)

5. Устранение типовых неполадок в работе частотного преобразователя

Если причины возникновения неполадки не известны, то рекомендуется произвести сброс параметров на заводские значения Р117=8 и провести настройку преобразователя частоты еще раз.

Устранение типовых неполадок в работе
Неполадка Причина и способ устранения
Параметр не может быть изменен
  • параметр заблокирован. Установите значение параметра P118=0, затем установите необходимый параметр
  • данный параметр не может быть изменен во время работы двигателя. Установите значение данного параметра во время остановки двигателя
Электродвигатель не начинает вращение при подаче команды «ПУСК»
  • установлен неправильный режим работы, убедитесь, что P102 задан верно
  • нет задания частоты или заданная частота меньше пусковой частоты
  • проверьте цепи питания и управления
  • проверьте не подан ли сигнал «СТОП» или «аварийное отключение»
  • выход из строя кнопки пуска
  • ПЧ находится в режиме аварийной защиты. Устраните причину, вызвавшую срабатывание защиты
  • неисправный двигатель, проверьте двигатель
Двигатель не работает в режиме вращения в обратном направлении
  • вращение в обратном направлении заблокировано, разблокируйте его (Р104, Р314)
Двигатель работает в режиме вращения в обратном направлении
  • измените порядок подключения двух выходных силовых клемм U, V, W
  • проверьте не поступает ли сигнал вращения в обратном направлении. Правильно запрограммируйте функцию дискретного входа

Инженер ООО «КИП-Сервис»
Рыбчинский М.Ю.

Источник

Применение ПЧ ELHART EMD-MINI в системах поддержания давления

1. Введение

Задачи, требующие перемещения газов и жидкостей под напором, возникают и в промышленности, и в повседневной жизни. В промышленности используются компрессорные установки, системы смазки и охлаждения, системы транспортирования продуктов, различные гидравлические системы, приводы. В бытовой сфере применяются системы водоснабжения, вентиляции, отопления, кондиционирования, канализационные насосные станции. Используемые для этого насосы классифицируются по принципу работы и по конструкции, но большинство из них объединяет привод — асинхронный электродвигатель.

Данный двигатель получил широкое распространение благодаря своей простоте и надежности. Он не требует регулярного обслуживания, у него отсутствует скользящий контакт и возможен прямой пуск от сети. Ещё одно значительное преимущество — простота регулирования скорости вращения.

В данной статье рассмотрено частотное регулирование в сравнении с классическим дросселированием, описаны реализация и способ настройки на примере преобразователя частоты.

2. Классическое регулирование

Работу любого насоса характеризует зависимость напор-подача (см. рисунок 1). Эта характеристика показывает, какой напор сможет обеспечить насос при текущей подаче.

Рисунок 1 — Рабочая характеристика насоса

Определить, сможет ли насос обеспечить требуемую производительность, можно по характеристике насоса и по требуемым в системе напору и подаче. На рисунке 2 представлена характеристика насоса с отмеченными точками: требуемый напор (Hтр) и требуемая подача (Qтр). Согласно графику данный насос сможет обеспечить требуемую производительность с определенным запасом (зеленая зона). Но если расход превысит значение Q1, насос не сможет обеспечивать требуемый напор (красная зона).

Рисунок 2 — Определение рабочей точки на характеристике насоса

Если насос работает с постоянной подачей, требуется лишь выбрать модель соответствующей производительности. Но тогда как обеспечивать напор при переменной подаче? Ведь при изменении расхода жидкости будет меняться и создаваемый напор. Чем больше в системе будет расход, тем меньшее давление насос сможет обеспечить. И наоборот, при снижении расхода давление будет повышаться. Даже в представленном примере насос нагнетает напор больше (H1), чем требуется (Hтр).

Типовое решение данной проблемы — дросселирование. В напорный трубопровод добавляется сопротивление, снижающее давление при низком разборе. Дросселирование позволяет регулировать только в одну сторону — на уменьшение подачи. Поэтому для поддержания требуемого напора необходимо применить насос, производительность которого при Qтр сможет обеспечить Hтр (см. рисунок 3).

Рисунок 3 — Несоответствие характеристик насоса требованиям

При снижении расхода (давление при этом растет) необходимо будет все больше закрывать дроссель. Работа в таком режиме неэффективна — целесообразно остановить насос, а при увеличении расхода запустить повторно. На рисунке 4 изображено, как при достижении требуемого напора (Hтр) происходит остановка насоса, а при падении ниже заданного порога (Hмин) — насос запускается вновь.

Рисунок 4 — Двухпозиционное регулирование

Такая система обрела популярность благодаря своей простоте, но имеет и ряд минусов:

1. В момент прямого пуска двигатель потребляет ток в 6-7 раз превышающий номинальный, что приводит к дополнительной нагрузке на сеть. При нехватке мощности питающей сети двигатель может не запуститься.

2. «Пусковые токи» – это кратковременное явление, но оно оказывает негативное влияние на обмотки двигателя (возможен перегрев и старение изоляции). Для каждого двигателя изготовитель указывает допустимое количество включений в час — это накладывает ограничение на частоту включения/отключения насосов.

3. Двухпозиционное регулирование зачастую является причиной колебательных процессов (см. рисунок 4). Запуск и остановка двигателя происходят скачкообразно — внезапное повышение давления приводит к возникновению гидроударов, повреждениям труб и запорной арматуры.

4. Дросселирование при переменной подаче является неэффективным с точки зрения энергозатрат, так как насос постоянно работает с номинальной скоростью.

Часть проблем решается дополнительным оборудованием:

  • Для запуска двигателя применяют устройства плавного пуска или переключатели «звезда-треугольник»
  • Колебания давления компенсируются за счет аккумулирующих резервуаров, систем рециркуляции.
  • Устройства коммутации защищаются дополнительными реле напряжения и тепловыми реле.

Качество работы такой системы растет, но при этом растет и количество элементов в системе управления. Это влечет за собой снижение общей надежности и усложнение обслуживания.

3. Регулирование оборотов

Избавиться от вышеописанных проблем возможно при регулировании оборотов насоса. Существует зависимость расхода (Q) и напора (Н) от скорости вращения (n). Для центробежных насосов её описывает закон подобия:

Согласно ему, изменяя частоту вращения, возможно изменить характеристику насоса.

Таким образом, с помощью полученной функции (3) можно построить подобные параболы и для других режимов работы, где n ≠ nном. На рисунке 5 изображены различные характеристики одного насоса, но на разных скоростях. Видно, что изменяя скорость вращения, можно обеспечить требуемое соотношение

Данные кривые построены с учетом постоянного КПД. В действительности с увеличением скорости вращения возрастает скорость потока и гидравлические потери в трубопроводе, а при снижении скорости увеличиваются механические потери в двигателе. Поэтому для каждого насоса имеется оптимальная скорость, при которой достигается максимальный КПД.

Рисунок 5 — Характеристики насоса Grundfoss CM3 при изменении частоты вращения

Стоит учесть, что у центробежных насосов значение напора находится в квадратичной зависимости от скорости вращения. Регулировать обороты достаточно в пределах 30-40 % от номинальной скорости. К тому же за счет регулирования скорости можно осуществить плавный разгон двигателя и избежать возникновения гидроударов, колебаний в системе и высоких пусковых токов.

4. Реализация системы управления на ПЧ

В системах водоснабжения расход является переменной величиной, а давление должно быть неизменным. Если в такую систему добавить датчик давления (обратной связи), можно реализовать автоматический регулятор. В качестве таких регуляторов отлично зарекомендовали себя преобразователи частоты ELHART EMD-MINI и EMD-PUMP. Они имеют встроенный ПИД-регулятор и универсальный аналоговый вход. В данном разделе на примере преобразователя EMD-MINI будет рассмотрена типовая настройка параметров управления.

По умолчанию аналоговый вход ПЧ настроен на сигнал 0. 10 В (к примеру, такой сигнал у датчиков mic+, преобразователей T201DCH, датчиков влажности). Чтобы запустить режим регулирования, достаточно подключить подобный датчик, задать параметр P600=1 и нажать кнопку «RUN». В зависимости от сигнала обратной связи преобразователь решит: оставаться на текущей частоте, понижать её или повышать. Конечно, для частного случая может потребоваться дополнительная настройка. За работу ПИД-регулятора отвечает шестая группа параметров (см. Таблицу 1).

Таблица 1 — Параметры настройки ПИД-регулятора
Код Параметр Описание параметра
P600 Включение ПИД-регулятора 0: Выключен
1: Включен
2: Включение по условию
P601 Тип обратной связи ПИД-регулятора 0: Отрицательная обратная связь
1: Положительная обратная связь
P602 Источник задания уставки ПИД-регулятора 0: Фиксированная уставка P604
1: Потенциометр на пульте управления ПЧ
P604 Фиксированная уставка ПИД-регулятора 0. 100,0 %
P605 Верхнее значение аварийного сигнала обратной связи ПИД-регулятора 0. 100 %
P606 Нижнее значение аварийного сигнала обратной связи ПИД-регулятора 0. 100 %
P607 Пропорциональная составляющая. ПИД-регулятора 0. 500,0
P608 Время интегрирования ПИД-регулятора 0. 200,0 сек
P609 Время дифференцирования ПИД-регулятора 0. 200,0 сек
P611 Частота входа в спящий режим 0. 120 Гц
P612 Время задержки перехода в спящий режим 0. 200 сек
P613 Уровень выхода из спящего режима 0. 100 %
P614 Значение обратной связи, отображаемое на дисплее 0. 9999
P615 Кол-во разрядов, отображаемых на дисплее 0. 4
P616 Кол-во разрядов после точки, отображаемых на дисплее 0. 4
P621 Отслеживание обрыва сигнала AVI 0: Не отслеживается
1: Индикация
2: Остановка с ручным сбросом аварии
P622 Нижний уровень сигнала AVI 0. 2 В (4 мА соответствуют 1 В)
P623 Время обнаружения обрыва сигнала 0. 20 сек

Помимо настроек регулятора пользователю могут понадобиться дополнительные настройки:

Таблица 1 — Параметры настройки преобразователя
Код Параметр Значение
P000 Параметр, отображаемый на дисплее после подачи питания 0. 12
P102 Источник команд управления 0: Пульт управления
1: Многофункциональные дискретные входы
2: Интерфейс RS-485
P106 Минимальная выходная частота 0. 50 Гц
P300 Минимальное напряжение на входе AVI 0. 10 В
P301 Максимальное напряжение на входе AVI 0. 10 В
P315-318 Многофункциональные дискретные входы 0. 25
P325 Многофункциональный релейный выход 0. 28

Ниже представлен пример использования ПЧ для управления насосной станцией:

В данном случае используется преобразователь давления PTE5000C-010-М20-С (диапазон измерения 10 бар, выход 4. 20 мА). Команда на запуск насоса подается с внешнего переключателя. Схема подключения представлена на рисунке 6.

В примере указана схема подключения для ПЧ модификации EMD-MINI-015T (v1.0). Символ «T» обозначает тип питающего и выходного напряжения — трехфазное, 380В. Если обмотки используемого двигателя рассчитаны на напряжение 220В, существует модификация «S». Питающее напряжение таких ПЧ — однофазное, 220В (используются только клеммы L1 и L2), а выходное напряжение — трехфазное, 220В.

Для данной схемы подключения необходимо настроить параметры:

  • P117 = 8: Сброс на заводские настройки
  • P000 = 12: Настройка режима отображения
  • P102 = 1: Источник команды «Пуск» — дискретный сигнал
  • P106 = 20 Гц: Минимальная выходная частота — 20 Гц
  • P300 = 1 В: Минимальный сигнал на входе AVI (1 В соответствует 4 мА)
  • P301 = 5 В: Максимальный сигнал на входе AVI (5 В соответствует 20 мА)
  • P325 = 3: Дискретный выход срабатывает при аварии
  • P600 = 1: Включение режима ПИД-регулятора
  • P604 = 50 %: Задание уставки относительно сигнала ОС — 5 бар
  • P611 = 22 Гц: Частота входа в спящий режим
  • P612 = 60 сек: Время задержки входа в спящий режим
  • P613 = 60 %: Уровень выхода из спящего режима
  • P614 = 1000: Значение обратной связи, отображаемое на дисплее — 10.00 бар

В результате мы получим регулятор давления, который поддерживает давление на уровне 5 бар. Он имеет возможность ухода в спящий режим при работе на частоте ниже 22 Гц в течение 60 секунд. Обладает аварийной индикацией и функцией автостарта. Приведенный пример показывает общее построение системы с ПЧ. Конечно, пользователь может более гибко настроить работу преобразователя под свои требования.

С помощью представленных параметров можно изменить:

4.1 Способ включения

Запускать ПЧ можно различными способами:

  • Если задать P600=1, то ПЧ будет постоянно находиться в режиме ПИД-регулятора, а команду на запуск самого насоса необходимо подавать дополнительным сигналом (см. P102).
  • Если задать P600=2, то ПИД-регулятор будет запускаться только при наличии сигнала на дискретном входе (например, P318=19) . С помощью внешнего тумблера можно реализовать «автоматический» и «ручной» режимы. В одном положении давление поддерживает ПЧ, а в другом — оператор, который вручную управляет насосом.

4.2 Тип обратной связи

ПЧ может работать с положительной (P601=1) и отрицательной (P601=0) обратной связью (ОС). Регулятор с положительной ОС применяется в системах, где управляющее воздействие снижает контролируемую величину, например холодильные машины. А отрицательная ОС подходит для систем, где управляющее воздействие увеличивает контролируемую величину, например повысительные насосы.

4.3 Способ задания уставки

Параметр P602 определяет способ задания уставки:

  • При P602=0 оператор задает уставку в параметре P604. Во время работы эту уставку можно изменять кнопками «ВВЕРХ»/«ВНИЗ». Также при работе по протоколу Modbus задание уставки осуществляется через параметр P604.
  • При P602=1 оператор задает уставку только с помощью потенциометра.

4.4 ПИД-регулятор

В ПЧ реализован ПИД-регулятор.

Параметры P607, P608 и P609 соответственно являются коэффициентами П, И, Д. В случае неудовлетворительной работы пользователь может вручную корректировать коэффициенты.

4.5 Спящий режим

Если при работе выходная частота опускается ниже значения P611 в течение времени, заданного в P612, ПЧ останавливает двигатель. Выход из спящего режима происходит при превышении рассогласования на значение, заданное в параметре P613. Применение спящего режима позволяет повысить энергоэффективность системы. Для обеспечения стабильной работы необходимо установить минимальную выходную частоту — P106.

4.6 Тип используемого датчика

ПЧ поддерживает работу с аналоговыми сигналами 0. 10 В и 4. 20 мА. Для переключения аналогового входа на определенный сигнал нужно установить переключатель на корпусе ПЧ и задать соответствующие параметры:

  • Для датчиков 0. 10 В — P300=0, P301=10;
  • Для датчиков 4. 20 мА — P300=1, P301=5.

Стоит учитывать, что предпочтительней использовать токовый сигнал, так как он обладает большей помехозащищенностью, чем сигнал 0. 10 В.

4.7 Отслеживание обрыва датчика

ПЧ может отслеживать потерю сигнала обратной связи. «Обрыв датчика» — ситуация, когда значение сигнала ОС меньше P622 в течение времени P623. Реакцию на обрыв определяет параметр P621:

  • «0» – обрыв не отслеживается;
  • «1» – при обрыве на экран выводится индикация ошибки, ПЧ сохраняет выходную мощность;
  • «2» – при обрыве ПЧ останавливает двигатель, требуется сброс ошибки.

4.8 Масштабирование сигнала ОС

При необходимости показания подключенного датчика можно приводить к пользовательской шкале: с помощью P614, P615 и P616 пользователь может задать значение сигнала ОС, которое будет отображаться на дисплее.

  • P614 – значение соответствующее максимальному сигналу ОС.
  • P615 – количество разрядов, отображаемых на дисплее.
  • P616 – количество разрядов, отображаемых после запятой.

К примеру, если сигнал датчика давления меняется в диапазоне 0.00. 8.00 бар, необходимо задать параметры P614=800, P615=3, P616=2. Корректная настройка данных параметров важна. Относительно сигнала ОС задается уставка регулятора. У ПЧ серии EMD-MINI, выпущенных после четвертого квартала 2018 г., уставка задается в пользовательских единицах. А у ПЧ, выпущенных до этого периода, уставка задается в процентах относительно сигнала ОС. Например, если используется датчик давления (0. 8 бар) и необходимо выставить задание на 6 бар, для старых модификаций ПЧ необходимо установить значение 75%, а для новых модификаций — 6 бар (Рисунок 7).

Рисунок 7 — Задание уставки в различных величинах

4.9 Способ вывода измерений

У ПЧ имеется настраиваемый параметр P000, который отвечает за дополнительный экран отображения (Рисунок 8).

Для EMD-MINI с ПО v1.0 возможно отображение ОС только в стандартном режиме. Для этого необходимо установить P000=7. В стандартном режиме на экране будут отображены значение ОС и задание одновременно.

Для EMD-MINI с ПО v1.1 доступны два варианта отображения. При P000=12 на экран будет выведен сигнал ОС в стандартном режиме. При P000=10 включается расширенный режим — сигнал ОС и задание выводятся на экран последовательно.

Рисунок 8 — Настройка дополнительного экрана отображения

4.10 Аварийная сигнализация

У ПЧ имеется релейный выход, который можно использовать для дополнительного информирования оператора, например с помощью сигнальной лампы. В P606 задается минимальное давление, а в P607 – максимальное, при котором сработает выход (при P325=14 или P325=15 соответственно). Возможна индикация обрыва датчика ОС, для этого нужно задать P325=16. Также релейный выход может срабатывать при возникновении аварийных ситуаций (P325=3).

5. Применение дополнительного оборудования

При создании системы с частотным регулированием существуют некоторые особенности по использованию дополнительного оборудования и настройке системы:

5.1 Датчик давления

Неотъемлемой частью системы регулирования является датчик давления. От него зависит точность работы всей насосной станции. В первую очередь датчик должен соответствовать требованиям:

  • по температуре рабочей и окружающей среды;
  • по химической совместимости со средой;
  • по точности измерения;
  • по типу присоединения;
  • по перегрузочной способности (для защиты от гидроудара).

Более подробно выбор датчиков давления описан в отдельной статье.

Рисунок 9 — Датчики давления: ELHART PTE5000C, Klay CER-8000 и Delta DPA

5.2 Монтаж датчика давления

Насос может быть установлен как в систему холодного водоснабжения, так и горячего. Для обеспечения стабильной работы необходимо устанавливать датчик через трехходовой кран и сифонную трубку (Рисунок 10).

Рисунок 10 — Монтаж датчика давления

Кран позволяет производить безопасный монтаж датчика в трубопровод. При установке датчика без крана существует риск повреждения измерительного элемента – вкручивание датчика приводит к сжатию жидкости (давление начинает расти), и измерительный элемент механически разрушается. Петлевая трубка служит для охлаждения измеряемой среды, так как за счет нагрева самого датчика возможно образование конденсата внутри корпуса, который приводит к окислению и корродированию компонентов.

5.3 Диагностика работы насоса

Для проверки работоспособности насоса необходимо контролировать перепад давления или скорость потока в системе (Рисунок 11). Это позволит на раннем этапе диагностировать снижение производительности насоса и не допустить чрезмерного износа оборудования.

Благодаря своей простоте широкое распространение получили реле дифференциального давления, которые сравнивают показания в двух измерительных точках. Релейный выход срабатывает при достижении заданного оператором перепада. Для насосов с малым напором возможно применение реле протока и датчиков скорости. Сигналы с данных устройств могут использоваться как самим ПЧ (для аварийной остановки), так и для верхнего уровня АСУ ТП (например для сбора статистики).

Рисунок 11 — Устройства защиты: COMAC CSFlow, РОСМА РДД-2Р, Siemens QVE1901

5.4 Защита от сухого хода насоса

В зависимости от конструкции насоса существует риск его перегрева и выхода из строя. Часто причиной является работа насоса при отсутствии рабочей среды в подающем трубопроводе. Для защиты применяют различные датчики сухого хода (Рисунок 12), которые отслеживают наличие жидкости или давления. Например, в системах, где в подающем трубопроводе присутствует избыточное давление, достаточно использовать реле давления (прессостат). А при малом давлении в подающем трубопроводе оптимально использовать электромагнитные сигнализаторы.

Рисунок 12 — Датчики сухого хода: РОСМА РД-2Р, Klay KMW

5.5 Применение обратного клапана

При построении системы с частотным регулированием возможна нестабильная работа спящего режима. ПЧ может с высокой цикличностью производить запуск и остановку насоса или вовсе не уходить в спящий режим. Особенно эта проблема распространена на скважинных насосах. Она связана с тем, что при достижении рабочего давления ПЧ постепенно снижает выходную частоту. Значение напора постепенно падает, и под действием силы тяжести вода может менять направление потока. Для решения данной проблемы необходимо использовать обратный клапан. На рисунке 13 представлен пример установки обратного клапана со стороны напорного трубопровода.

Рисунок 13 — Установка обратного клапана

Также в некоторых ситуациях подобное поведение возможно у системы с уже установленным обратным клапаном. Это может быть обусловлено неправильно настроенной частотой входа в спящий режим. В таком случае необходимо опытным путем снизить частоту входа в спящий режим (P611) до значения, при котором насос обеспечит оптимальную работу.

5.6 Монтаж запорной арматуры

Необходимо учитывать требования СП 31.13330.2012 (п. 10.8 и 10.9) по оборудованию насосных станций запорной арматурой. Это позволит беспрепятственно производить техническое обслуживание оборудования на насосной станции.

Рисунок 14 — Установка запорной арматуры

6. Вывод

Современные преобразователи частоты обладают достаточным функционалом для работы в системах поддержания давления. Они с легкостью заменяют системы дроссельного регулирования, обладая следующими преимуществами:

  • снижение пусковых токов;
  • снижение колебаний давления в системе;
  • повышение энергоэффективности установки;
  • повышение общей надежности системы;
  • упрощение обслуживания.

Кроме того, благодаря встроенному регулятору и универсальному аналоговому входу, применение ПЧ не ограничено насосным оборудованием. Различные компрессорные и климатические установки, транспортеры, шнековые агрегаты и множество других систем, где управляющее воздействие оказывается за счет асинхронного двигателя, можно автоматизировать с помощью линейки преобразователей EMD-MINI.

Рисунок 15 — Применение преобразователей частоты EMD-MINI

Инженер ООО «КИП-Сервис»
Терёшин А.Д.

Список использованной литературы:

  1. Насосы и насосные станции: Карелин В.Я., Минаев А.В., Учебник для вузов. — 3-е изд., переработанное. -М.: ООО «ИД БАСТЕТ», 2010г. – 448с.
  2. Насосная азбука: Wilo, 2006г. – 60с.
  3. СП 31.13330.2012. Свод правил. Водоснабжение. Наружные сети и сооружения. Актуализированная редакция СНиП 2.04.02-84. С изменением № 1.
  4. Преобразователь частоты EMD-MINI: Руководство по эксплуатации, 2018г. – 128стр.
  5. Рабочий проект КС-0518-01-АВК: Бурнос А.В., ООО «КИП-Сервис», 2018г. – 6стр.

Источник

Оцените статью
Электроника